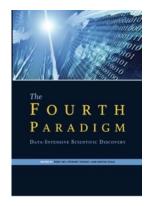
AMERICAN EDUCATIONAL RESEARCH ASSOCIATION

ACCEPTING EDUCATIONAL RESPONSIBILITY

2021 VIRTUAL ANNUAL MEETING APRIL 8–12, 2021

Enlightening Interdisciplinarity in **STEM** for Teaching

Computational simulations as citizenship tools: a study with university physics and mathematics students


Eleonora Barelli, Olivia Levrini University of Bologna Department of Physics and Astronomy

2021, April 9th - AERA Annual Meeting

- The widespread use of computational and data-intensive approaches is changing the ways of doing science and conducting research
- Simulations also impact society and decision-making processes
- They are complex tools which embed a variety of knowledge elements
- In the classroom very seldom they are analysed in their epistemological, methodological and societal aspect (<u>Greca, Seoane & Arriassecq, 2015</u>)

Consequences

- widening gap between the current expert understanding about scientific simulations and knowledge of policymakers, citizens and students (<u>Jacobson</u> <u>& Wilensky</u>, 2006)
- 2. mistrust attitudes toward simulations and their results (<u>Barelli, Branchetti,</u> <u>Tasquier, Albertazzi & Levrini, 2018</u>)

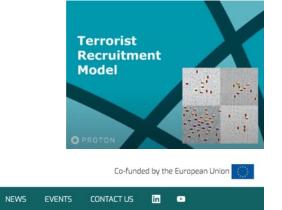
How can science education guide students to recognize simulations as authentic scientific tools and to develop action and decision-making skills?

Enlightening Interdisciplinarity in STEM for Teaching

THE STUDY

- March-April 2020, online
- 50 Physics and Mathematics master students enrolled in the course of Physics Education _

Role-play activity to analyse a simulation on terrorist groups formation


Computational simulations as citizenship tools: a study with university physics and mathematics students

THE SIMULATION ON TERRORIST GROUPS FORMATION

- Simulation developed within the Horizon2020 "PROTON" project
- A group of physicists was commissioned to model the formation of terrorist groups in European cities and possible policy interventions.
- Agent-based model: individuals interact according to their routines, sharing their opinions on topics like institutional trust and subjective deprivation
- From the agents' dynamics emerges a process of radicalization and recruitment

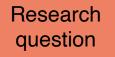
Computational simulations as citizenship tools: a study with university physics and mathematics students

CNR

TO DI SCIENZE E TECNOLO DELLA COGNIZIONE

RESOURCES

C PROTON


PROJECT

Computational simulations as citizenship tools: a study with university physics and mathematics students

THE ROLE-PLAY ACTIVITY

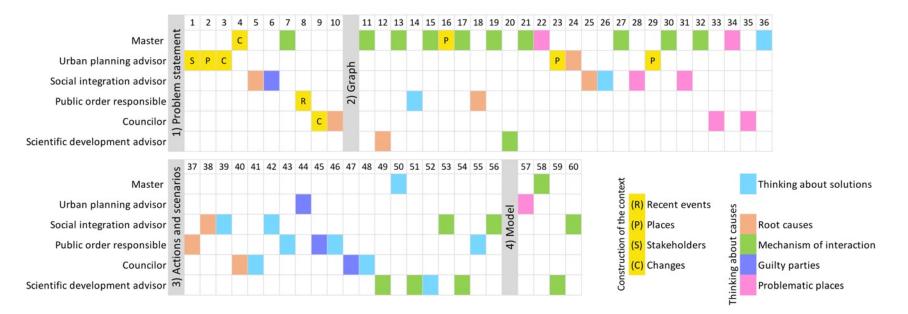
- 8 groups of 6 students each
- One student for each group is the master and acted the role of a mayor, the others were members of the city council
- The group was requested to negotiate a decision for an intervention to contrast the formation and increase of the terrorist group
- Elements of the simulation were progressively unveiled (data, graphs, scenarios of intervention, elements of the model)

Which forms of reasoning do students put into play when discussing a complex societal problem through a simulation? In particular, which forms of reasoning are triggered by different elements of the simulation (data, graph, actions and scenarios, model)?

Computational simulations as citizenship tools: a study with university physics and mathematics students

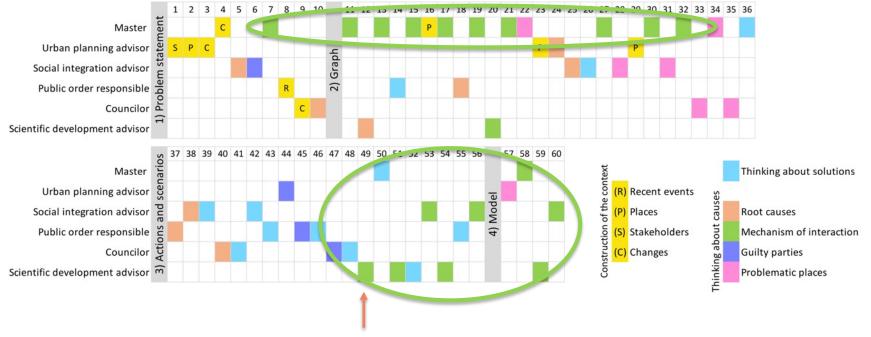
STUDENTS' FORMS OF REASONING

Construction of the context		
(recent events)	I wanted to say that lately a wave of vandalism has occurred in the city	
(places)	If we think about the hypothesis of the agglomeration in the peripheral area, I can still let you know that there are several abandoned buildings that were left, let's say, by companies that have closed	
(stakeholders)	There are still families who do not have equal opportunities and who are not yet well integrated, do not yet have a job	
(changes)	In the last period the area has been repopulated due to the immigration of a group of people a repopulation of the neighbourhood occurred	
Thinking about solutions		


We have to start integrating these people, starting from small things. By proposing cultural initiatives, giving at least basic social assistance, or in any case also integrating children in schools

	Thinking about causes
(root causes)	Apparently, there was an external input, or something linked to what my colleagues said, some migration phenomena or some discontent, which led to the formation of the group
(mechanism of interaction)	In my opinion there must have been a triggering event that has caused discontent between several people and one person, maybe two people had the idea of acting, doing something then others started to gather around them
(guilty parties)	Regarding the formation of this group, of this aggregate of people, do you know if they have entered the city in recent months or is it a group of people who have lived in the city for years?
(problematic places)	We could find an origin not in a square in the city centre but in an area where there are strong migratory flows or strong agglomerations

Computational simulations as citizenship tools: a study with university physics and mathematics students


ELEMENTS OF THE SIMULATION AND FORMS OF REASONING

Computational simulations as citizenship tools: a study with university physics and mathematics students

ELEMENTS OF THE SIMULATION AND FORMS OF REASONING

Introduction in the discussion of the model of opinion dynamics

n STEM for Teaching

Computational simulations as citizenship tools: a study with university physics and mathematics students

CONCLUSIONS

- Students display different forms of reasoning, activated by the different knowledge elements _ embedded in a simulation
- These reasonings allowed to compare intervention scenarios and negotiate informed decisions
- The potential of simulations lies also in their multifaceted character that embed a diversity of knowledge forms; each of them has its own specificities and can trigger different reasonings on the same simulated problem

Computational simulations as citizenship tools: a study with university physics and mathematics students

REFERENCES

- Adam, D. (2020). Special report: The simulations driving the world's response to COVID-19. Nature, 580, 316-318. doi:10.1038/d41586-020-01003-6
- Barelli, E., Branchetti, L., Tasquier, G., Albertazzi, L., & Levrini, O. (2018). Science of Complex Systems and Citizenship Skills: A Pilot Study with Adult Citizens. EURASIA Journal of Mathematics, Science and Technology Education, 14(4), 1533-1545. doi: 10.29333/ejmste/84841
- Greca, I. M., Seoane, E., Arriassecq, I. (2014). Epistemological Issues Concerning Computer Simulations in Science and Their Implications for Science Education. Science & Education, 23, 897-921. doi: 10.1007/s11191-013-9673-7
- Hey, T., Tansley, S., Tolle, K. (2009). The Fourth Paradigm: Data-intensive Scientific Discovery. Washington: Microsoft Research. ISBN: 978-0982544204.
- Grüne-Yanoff, T., & Weirich, P. (2010). The Philosophy and Epistemology of Simulation: A Review. Simulation & Gaming, 41(1), 20-50. doi:10.1177/1046878109353470
- Jacobson, M. J., Wilensky, U. (2006). Complex Systems in Education: Scientific and Educational Importance and Implications for the Learning Sciences. The Journal of the Learning Sciences, 15(1), 11–34. doi:10.1207/s15327809jls1501_4.
- Kermack, W. O., McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700-721. doi:10.1098/rspa.1927.0118
 Vespignani, A. (2019). L'algoritmo e l'oracolo. Come la scienza predice il futuro e ci aiuta a cambiarlo. Milano: Il Saggiatore. ISBN: 978-8842825821