FIGURE 3-17 This strobe photo-
graph of a ball making a series of
bounces shows the characteristic
“parabolic” path of projectile motion.

Horizontal and
vertical motion
analyzed separately

FIGURE 3-18 Projectile motion of a small ball
projected horizontally. The dashed black line

at each point is in the direction of motion and thus
is tangent to the path. The velocity vectors are green
arrows, and velocity components are dashed.

(A vertically falling object starting at the same point
is shown at the left for comparison; v, is the same for
the falling object and the projectile.)

mProjectile Motion

In Chapter 2, we studied the motion of objects in one dimensipn in te{ms of
displacement, velocity, and acceleration, including purely vertlcall motion of
falling bodies undergoing acceleration due to gravity. Now we examine the more
general motion of objects moving through the air in two dimensions near the
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs,
and speeding bullets. These are all examples of projectile motion (see Fig. 3-17),
which we can describe as taking place in two dimensions. Although air resistance
is often important, in many cases its effect can be ignored, and we will ignore it
in the following analysis. We will not be concerned now with lhe process by
which the object is thrown or projected. We consider only its motion after it hag
been projected, and before it lands or is caught—that i§, we analyze ouyr
projected object only when it is moving freely through the air under t!]e action
of gravity alone. Then the acceleration of the object is that due to gravity, which
acts downward with magnitude g = 9.80m/ s?, and we assume it is constant.'

Galileo was the first to describe projectile motion accurately. He showed
that it could be understood by analyzing the horizontal and vertical components
of the motion separately. For convenience, we assume that the motion begins at
time ¢t = 0 at the origin of an xy coordinate system (so x, = y, = 0).
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Let us look at a (tiny) ball rolling off the end of a horizontal table with an
initial velocity in the horizontal (x) direction, v,,. See Fig. 3—18, where an object
falling vertically is also shown for comparison. The velocity vector v at each
instant points in the direction of the ball’s motion at that instant and is always
tangent to the path. Following Galileo’s ideas, we treat the horizontal and vertical
components of the velocity, v, and v, separately, and we can apply the kinematic
equations (Egs. 2-11a through 2-11c) to the x and y components of the motion.

First we examine the vertical (y) component of the motion. At the instant
the ball leaves the table’s top (1 = 0), it has only an x component of velocity.
Once the ball leaves the table (at ¢ = 0), it experiences a vertically downward
acceleration g, the acceleration due to gravity. Thus v, is initially zero (v_vo =0)
but increases continually in the downward direction (until the ball hits the

ground). Let us take y to be positive upward. Then a, = —g, and from
Eq.2-11a we can write v, = —gt since we set vyo = 0. The vertical displace-
ment is given by y = —1gr%

""This restricts us to objects whose distance traveled and maximum height above the Earth are small
compared to the Earth’s radius (6400 km).
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*ﬂl’rojectile Motion Is Parabolic

We now show that the path followed by any projectile tlj a parrzlxleagéat, ;ff;ved ignore
air resistance and assume that g is constant. To show t 5, we ne hOrizont yasy
function of x by eliminating ¢ between the two equations ntal ang

vertical motion (Eq. 2-11b), and we set Xo = Yo = 0:

X = /Uxot
1 _,2
Y= v)()t - zgl 5
From the first equation, we have = x/vy, and we substitute this into the
second one to obtain

_ (?ﬂ)x _ (_ﬁ_)x;
y= Vv 2?)3;0

vocos By and vy = Y sinfy, we can also write

(tan 6o)x — (——g——)xz.

202 cos?

If we write vy

y

In either case, we see that y as a function of x has the form
y = Ax — BX%,

where A and B are constants for any specific projectile motion. This is the we]).
known equation for a parabola. See Figs. 3-17 and 3-27. .

The idea that projectile motion is parabolic was, in Galileo’s day, at the
forefront of physics research. Today we discuss it in Chapter 3 of introductory
physics!

FIGURE 3-27 Examples of projec
tile motion—sparks (small hot
glowing pieces of metal), water, and
fireworks. All exhibit the parabolic
path characteristic of projectile
motion, although the effects of air
resistance can be seen to alter the
path of some trajectories.
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4-2 Projectile Motion: Basic Equations

We now apply the independence of horizontal and vertical motions to projectiles. Just what

do we mean by a projectile? Well, a projectile is an object that is thrown, kicked, batted,

or otherwise launched into motion and then allowed to follow a path determined solely by

the influence of gravity. As you might expect, this covers a wide variety of physical systems.
In studying projectile motion we make the following assumptions:

e Airresistance is ignored.

e The acceleration due to gravity is constant, downward, and has a magnitude equal
to g = 9.81m/s%.

e The Earth’s rotation is ignored.

07/10/15 2:48 PM
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Air resistance can be significant if a projectile moves with relatively high speed or if it
encounters a strong wind. In many everyday situations, however, like tossing a ball to
a friend or dropping a book, air resistance is relatively insignificant. As for the accelera-
tion due to gravity, § = 9.81 m/s?, this value varies slightly from place to place on the
Earth’s surface and decreases with increasing altitude. In addition, the rotation of the
Earth can be significant when we consider projectiles that cover great distances. Little
error is made in ignoring the variation of g or the rotation of the Earth, however, in the
examples of projectile motion considered in this chapter.

Equations of Motion for Projectiles Let’s incorporate the preceding assumptions
into the equations of motion given in the previous section. Suppose, as in FIGURE 4-2,
that the x axis is horizontal and the y axis is vertical, with the positive direction up-
ward. Noting that downward is the negative direction, it follows that

a,=-9.81m/s> = —¢

Gravity causes no acceleration in the x direction. Thus, the x component of accelera-
tion is zero:
a, =0
With these acceleration components substituted into the fundamental constant-
acceleration equations of motion (Table 4-1) we find:

Projectile Motion (a, = 0, a, = -g)

— — — 2
X = Xy + vt Vy, = Vgy V7 = Vg

1 46
Y= + vOyt - Qgtz vy = 7)Oy - gt 7)yz vOyZ - ZXAY

In these expressions, the positive y direction is upward and the quantity g is positive. All
of our studies of projectile motion use Equations 4-6 as our fundamental equations—
again, special cases simply correspond to substituting different specific values for the
constants.

Demonstrating Independence of Motion A simple demonstration illustrates the in-
dependence of horizontal and vertical motions in projectile motion. First, while stand-
ing still, drop a rubber ball to the floor and catch it on the rebound. Notice that the ball
goes straight down, lands near your feet, and returns almost to the level of your hand
in about a second.

Next, walk—or roller skate—with constant speed before dropping the ball, then
observe its motion carefully. To you, its motion looks the same as before: It goes straight
down, lands near your feet, bounces straight back up, and returns in about one sec-
ond. This is illustrated in FIGURE 4-3. The fact that you were moving in the horizontal
direction the whole time had no effect on the ball’s vertical motion—the motions are
independent.

The moving person sees the ball fall
y straight down below her hand. ..

...buta staﬁonary observer sees the ball follow a curved path.

A FIGURE 4-3 Independence of vertical and horizontal motions \When you drop a ball while
walking, running, or skating with constant velocity, it appears to you to drop straight down
from the point where you released it. To a person at rest, the ball follows a curved path that
combines horizontal and vertical motions.

Y
~ . The acceleration of
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A FIGURE 4-2 Acceleration in free fall All
objects in free fall have acceleration
components a, = 0 and a, = —g when
the coordinate system is chosen as shown
here. This is true regardless of whether
the object is dropped, thrown, kicked, or
otherwise set into motion.

Big Idea 2 Projectiles are ob-
jects that move under the influence
of gravity alone. Projectiles can be
dropped from rest or thrown at some
angle to the horizontal. Once they are
launched, they have all the character-
istics of projectile motion, irrespec-
tive of how their motion started.

PHYSICS

IN CONTEXT

Looking Ahead

The basic idea behind projectile motion is

used again in Chapter 12, when we con-
sider orbital motion.

PROBLEM-SOLVING NOTE

Acceleration of a Projectile

When the x axis is chosen to be horizon-
tal and the y axis points vertically upward,
it follows that the acceleration of an ideal
projectileis a, = O and a, = —g.
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A FIGURE 4-4 Visualizing Concepts Independence of Motion (a) An athlete jumps upward
from a moving skateboard. The athlete retains his initial horizontal velocity, and hence remains
directly above the skateboard at all times. (b) The pilot ejection seat of a jet fighter is being
ground-tested. The horizontal and vertical motions are independent, and hence the test dummy
is still almost directly above the cockpit from which it was ejected. (Notice that air resistance is
beginning to reduce the dummy'’s horizontal velocity.) (¢) This rollerblader may not be thinking
about independence of motion, but the ball she released illustrates the concept perfectly as it
falls directly below her hand.

To an observer who sees you walking by, the ball follows a curved path, as shown.
The precise shape of this curved path—a parabola—is verified in the next section.
Additional examples of this principle are shown in FIGURE 4-4.



