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1 The Splendors and Miseries

of Quantum Computers

Moore’s Law states that the number of transistors in computers we
can build doubles every two years. This progress is only possible if
we make transistors ever smaller. In 2017, the width of a transistor
is at the scale of 10 nanometers, which corresponds to a layer of only
50 atoms in depth. Already at this scale, quantum e↵ects, such as
quantum tunnelling, become significant. Clearly with the trajectory
of Moore’s Law, our present paradigm for computer architecture will
soon hit the wall, since the size of a transistor cannot possibly be
smaller than the distance between atoms in a crystal. Moreover as we
approach this barrier, quantum e↵ects will become more prominent.

In our daily life, we deal with the objects that consist of many
atoms (their number in a grain of sand is 1020). In large collections
of atoms, quantum e↵ects get averaged out, and as a result we do
not experience quantum mechanics with macroscopic objects. Yet
quantum mechanics is increasingly present in our technology – such an
ordinary thing like an LED flashlight, operates on quantum principles.

The idea of quantum computing is to embrace the bizarre quantum
world, instead of fighting its influence. This is not easy, but there is a
lot to gain. Quantum computers are devices that use quantum systems
as processors.

What are the riches o↵ered by quantum computers?
1. We get exponentially more memory, compared to our present

computers.
2. We will be able to run massively parallel computations, again

exponentially more parallel than anything we can envision with clas-
sical computers.

What are the challenges?
1. There is no direct access to memory. The act of reading from

quantum memory has a probabilistic outcome and destroys the records
as they are being read.

2. The quantum processor should be fully isolated from the envi-
ronment, yet we should have access to it to control it.
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3. We do not yet fully understand how to write e�cient quantum
algorithms which take advantage of the power of quantum computers.

Quantum computers have sound theoretical foundations in both
physics and mathematics. However technological obstacles remain
very serious, and a significant breakthrough is required. A lot of
progress is also needed in developing quantum algorithms. In order to
work on algorithms, one does not need access to a quantum computer,
but only pen and paper, empowered with the knowledge of the theory
of quantum computing.

Let us try to understand the di↵erence between classical and quan-
tum computers. In a classical computer data is stored in the memory
as sequences of 0’s and 1’s. The unit of memory is called the bit, and
it can store either 0 or 1. For the purpose of this discussion, it is useful
to view 0 and 1 purely as symbols.

The unit of memory of a quantum computer is called the qubit,
and it can store 0 and 1 simultaneously. More precisely, the value of
a qubit is a vector with length 1 on a plane:

In order to make a connection with a classical bit, we label one
coordinate axis with symbol 0 and the other axis with symbol 1. Ac-
cordingly, for the unit vectors on the coordinate axes we use notations
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which are traditional in quantum mechanics:

|0i =
✓
1
0

◆
, |1i =

✓
0
1

◆
.

A qubit may be then written as a vector

✓
a
b

◆
= a |0i+ b |1i ,

which is interpreted as a superposition of two classical bit values 0
and 1 with the weights a and b, where a2+b2 = 1. We emphasize that
|0i is not a zero length vector, but rather a unit length vector on an
axis that is labelled with symbol “0”.

When we build a computer as a physical machine, we need to use
physical objects which can implement our abstract constructions of a
bit and a qubit. A capacitor (an electronic device that can hold an
electric charge) may serve as a unit of memory of a classical computer.
A charged state of a capacitor represents 1, while discharged state
represents 0.

A photon may serve as a physical realization of a qubit. A photon
is a quantum of an electromagnetic wave. Imagine a photon flying
in a 3-dimensional space along the Z-axis. As it propagates, electric
field and magnetic field oscillate in mutually perpendicular directions
in XY-plane.

The specific way how this oscillation occurs, is called the polariza-
tion of a photon. There are two kinds of polarization – circular and
linear. In circular polarization, the electric field spirals around the
Z-axis as the photon propagates. In this book we will only consider a
simpler case of a linear polarization, when the electric field oscillates in
a fixed direction perpendicular to the Z-axis. Linearly polarized pho-
tons may be obtained by passing a beam of light through a polarizing
filter.

Polarized light is used in 3D movies. To create a 3D e↵ect, left and
right eyes should see slightly di↵erent pictures. The movie is shot with
two cameras that are slightly apart. The images from both cameras
are simultaneously projected on the movie screen, but the light from
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the two projectors are polarized in two di↵erent ways. The glasses
have polarizing filters, each passing light only from one projector. As
a result, two eyes receive distinct pictures, creating a 3D e↵ect.

Imagine a photon with a linear polarization at an angle ↵ in XY-
plane. This photon can be used as a physical implementation of a
qubit with value

cos(↵) |0i+ sin(↵) |1i .

A small technical point about the photon states |0i and � |0i.
Both states correspond to photons with the same axis of polariza-
tion, however the oscillation of the electric field for � |0i occurs in
antiphase relative to |0i. Individually, these photons are essentially
indistinguishable, however given a pair of such photons, we can detect
the di↵erence in phases, and view their states as two distinct qubit
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values.
Now let us progress towards multi-qubits. A 2-qubit is a vector

with 4 components of the form:

a0 |00i+ a1 |01i+ a2 |10i+ a3 |11i ,

where a20 + a21 + a22 + a23 = 1. The basis vectors in the space of 2-
qubits, |00i, |01i, |10i, |11i, also called pure states, correspond to the
4 possible classical values of 2-bit expressions. A general 2-qubit stores
a combination (also called superposition) of the 4 classical 2-bit values
simultaneously, with weights.

For example, the 2-qubit 0.3 |00i+0.1 |01i+0.9 |10i+0.3 |11i is a
superposition of all 4 classical values, but the 2-bit value “10” has a
heavier weight in this 2-qubit.

As you might now guess, a 3-qubit is a vector with 8 components:

a0 |000i+ a1 |001i+ a2 |010i+ a3 |011i
+ a4 |100i+ a5 |101i+ a6 |110i+ a7 |111i .

Notice the pattern in our notations between the index of the coe�cient
“a” and the label of the corresponding pure state. Take the term
a6 |110i, for example. Here “110” is the binary expression for the
integer 6.
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We can see that the number of terms in these expressions doubles
with each additional qubit. Thus for an n-qubit the number of terms
will be 2n. An 8-qubit involves 256 terms:

a0 |00000000i+ a1 |00000001i+ a2 |00000010i+ . . .+ a255 |11111111i .

As an exercise, let us determine the index of “a” for the term
with |11010011i in this expansion. The digits in a binary expansion
correspond to powers of 2 (as opposed to powers of 10 in the deci-
mal form). For an 8-bit expression, the leftmost digit corresponds to
27, while the rightmost digit corresponds to 20. We read the binary
expression “11010011” as an integer

1⇥ 27 + 1⇥ 26 + 0⇥ 25 + 1⇥ 24 + 0⇥ 23 + 0⇥ 22 + 1⇥ 21 + 1⇥ 20

= 128 + 64 + 16 + 2 + 1 = 211 (decimal).

Conversely, in order to write 117 (decimal) in a binary 8-bit form,
we expand 117 as a sum of powers of 2:

117 = 64+53 = 64+32+21 = 64+32+16+5 = 64+32+16+4+1

= 0⇥ 27 + 1⇥ 26 + 1⇥ 25 + 1⇥ 24 + 0⇥ 23 + 1⇥ 22 + 0⇥ 21 + 1⇥ 20

= 01110101 (binary).

In order to use more compact notations, we shall sometimes write
an 8-qubit using a decimal form:

a0 |0i+ a1 |1i+ a2 |2i+ . . .+ a255 |255i .

Here we understand that all decimal integers appearing in the nota-
tions of basis vectors need to be converted to the 8-bit binary form.

As the number of bits increases, such expressions will become very
long. An e�cient mathematical way of writing such sums is to use the
⌃ notation. With this notation an 8-qubit is written compactly as

255X

k=0

ak |ki .
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Here k is the index of summation and runs from 0 to 255, so the sum
has 256 terms. When k = 0, it produces the summand a0 |0i, k = 1
yields a1 |1i, and so on. For each basis vector |ki, the integer k is
understood to be in an 8-bit binary form.

As we shall see in the next chapter, the joint polarization state
of n interacting photons is described as an n-qubit. The amount of
memory required to record such a state on a classical computer grows
exponentially in n. If we allocate 1 byte to record the value of each
“a” coe�cient, then we need 2 bytes to store a 1-qubit, one kilobyte
to store a 10-qubit, one megabyte to store a 20-qubit, one gigabyte
to store a 30-qubit, one terabyte to store a 40-qubit, one petabyte to
store a 50-qubit. If we take all the matter in the visible Universe, and
make a giant memory chip based on today’s approach to computer
memory, we will not be able to store a 100-qubit on that device. At
the same time, a collection of 100 interacting photons is something
that may be everywhere around us. This realization led to inception
of quantum computing.

The idea of using quantum systems as computational devices was
put forward in 1980 independently by Yuri Manin and Paul Benio↵.
This idea was also discussed by Richard Feynmann in 1982. Founda-
tions of this theory were systematically developed by David Deutsch,
but a real explosion in this area was caused by the discovery of Shor’s
algorithm in 1994. The quantum algorithm that Peter Shor has de-
veloped, will break most of the public key cryptography which we use
today in Internet communications, once large-scale quantum comput-
ers are built. The goal of this book is to explain Shor’s algorithm and
all the background material required for understanding it.
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