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REASONING AND STRATEGY

a. We want to relate position and time, and hence we find the hor-
izontal position of the helicopter with x = x0 + v0xt + 1

2axt2, 
and the vertical position with y = y0 + v0yt + 1

2ayt2. In each 
case we substitute t = 5.3 s.

b. The velocity components at t = 5.3 s can be found using 
vx = v0x + axt  and vy = v0y + ayt .

Known  Horizontal speed, v0x = 11 m>s; vertical acceleration, 
ay = 0.96 m>s2.

Unknown  (a) Horizontal distance, x = ?; vertical distance, y = ? (b) Horizontal component of velocity, vx = ?;  
vertical component of velocity, vy = ?

SOLUTION

Part (a)

1. Use x = x0 + v0xt + 1
2 axt2 to find x at t = 5.3 s: x = x0 + v0xt + 1

2 axt2 = 0 + 111 m>s215.3 s2 + 0 = 58 m

2. Use y = y0 + v0yt + 1
2 ayt2 to find y at t = 5.3 s: y = y0 + v0yt + 1

2 ayt2 = 0 + 0 + 1
210.96 m>s2215.3 s22 = 13 m

Part (b) 

3. Use vx = v0x + axt  to find vx at t = 5.3 s: vx = v0x + axt = 11 m>s + 0 = 11 m>s
4. Use vy = v0y + ayt  to find vy at t = 5.3 s:  vy = v0y + ayt = 0 + 10.96 m>s2215.3 s2 = 5.1 m>s

INSIGHT
If we assume constant acceleration, the vertical position of the helicopter will eventually increase more rapidly 
with time than the horizontal position, due to the t2 dependence of y as compared with the t dependence of x. This 
results in a curved, parabolic path for the helicopter, as shown in our sketch. The helicopter’s velocity at 5.3 s is 
v = 2vx 

2 + vy  

2 = 2111 m>s22 + 15.1 m>s22 = 12 m>s  at  an angle of u = tan-11vy>vx2 = tan-1315.1 m>s2>111 m>s24 = 25° 
above the x axis. It’s clear that the angle of flight must be less than 45° at this time because the x component of velocity 
is greater than the y component.

PRACTICE PROBLEM
How much time is required for the helicopter to move 18 m vertically from its initial position? [Answer: t = 6.1 s]

Some related homework problems: Problem 4, Problem 5, Problem 6.
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t =  0

t 7  0

Enhance Your Understanding (Answers given at the end of the chapter)

1. The equations of motion of an object are x = 11 m>s22t2 and y = 12 m2 - 13 m>s2t. 
What are the x and y components of the object’s (a) initial position, (b) initial velocity, 
and (c) acceleration?

Section Review
• Motion in two dimensions is a combination of one-dimensional motion in the x and 

y directions. The basic equations used in this chapter are a straightforward extension 
of the equations of motion in Chapter 2. They are listed in Table 4-1.

4-2  Projectile Motion: Basic Equations
We now apply the independence of horizontal and vertical motions to projectiles. Just what 
do we mean by a projectile? Well, a projectile is an object that is thrown, kicked, batted, 
or otherwise launched into motion and then allowed to follow a path determined solely by 
the influence of gravity. As you might expect, this covers a wide variety of physical systems.

In studying projectile motion we make the following assumptions:

• Air resistance is ignored.

• The acceleration due to gravity is constant, downward, and has a magnitude equal 
to g = 9.81 m>s2.

• The Earth’s rotation is ignored.
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4-2 PROjeCTIle MOTIOn: BAsIC equATIOns  93

Air resistance can be significant if a projectile moves with relatively high speed or if it 
encounters a strong wind. In many everyday situations, however, like tossing a ball to 
a friend or dropping a book, air resistance is relatively insignificant. As for the accelera-
tion due to gravity, g = 9.81 m>s2, this value varies slightly from place to place on the 
Earth’s surface and decreases with increasing altitude. In addition, the rotation of the 
Earth can be significant when we consider projectiles that cover great distances. Little 
error is made in ignoring the variation of g or the rotation of the Earth, however, in the 
examples of projectile motion considered in this chapter.

Equations of Motion for Projectiles Let’s incorporate the preceding assumptions 
into the equations of motion given in the previous section. Suppose, as in FIGURE 4-2, 
that the x axis is horizontal and the y axis is vertical, with the positive direction up-
ward. Noting that downward is the negative direction, it follows that

 ay = -9.81 m>s2 = -g

Gravity causes no acceleration in the x direction. Thus, the x component of accelera-
tion is zero:
 ax = 0

With these acceleration components substituted into the fundamental constant-
acceleration equations of motion (Table 4-1) we find:

Projectile Motion (ax ∙ 0, ay ∙ –g)

x = x0 + v0xt vx = v0x vx 

2 = v0x 

2

y = y0 + v0yt - 1
2gt2

vy = v0y - gt vy  

2 = v0y  

2 - 2g∆y
 4-6

In these expressions, the positive y direction is upward and the quantity g is positive. All 
of our studies of projectile motion use Equations 4-6 as our fundamental equations—
again, special cases simply correspond to substituting different specific values for the 
constants.

Demonstrating Independence of Motion A simple demonstration illustrates the in-
dependence of horizontal and vertical motions in projectile motion. First, while stand-
ing still, drop a rubber ball to the floor and catch it on the rebound. Notice that the ball 
goes straight down, lands near your feet, and returns almost to the level of your hand 
in about a second.

Next, walk—or roller skate—with constant speed before dropping the ball, then 
observe its motion carefully. To you, its motion looks the same as before: It goes straight 
down, lands near your feet, bounces straight back up, and returns in about one sec-
ond. This is illustrated in FIGURE 4-3. The fact that you were moving in the horizontal 
direction the whole time had no effect on the ball’s vertical motion—the motions are 
independent.

Big Idea 2 Projectiles are ob-
jects that move under the influence 
of gravity alone. Projectiles can be 
dropped from rest or thrown at some 
angle to the horizontal. Once they are 
launched, they have all the character-
istics of projectile motion, irrespec-
tive of how their motion started.

PHYSICS  
IN CONTEXT 
Looking Ahead

The basic idea behind projectile motion is 
used again in Chapter 12, when we con-
sider orbital motion.

▲ FIGURE 4-2 Acceleration in free fall All 
objects in free fall have acceleration 
components ax = 0 and ay = -g  when 
the coordinate system is chosen as shown 
here. This is true regardless of whether 
the object is dropped, thrown, kicked, or 
otherwise set into motion.
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▲ FIGURE 4-3 Independence of vertical and horizontal motions When you drop a ball while 
walking, running, or skating with constant velocity, it appears to you to drop straight down 
from the point where you released it. To a person at rest, the ball follows a curved path that 
combines horizontal and vertical motions.

The moving person sees the ball fall
straight down below her hand c

cbut a stationary observer sees the ball follow a curved path.
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P R O B L E M - S O L V I N G  N O T E

Acceleration of a Projectile

When the x axis is chosen to be horizon-
tal and the y axis points vertically upward, 
it follows that the acceleration of an ideal 
projectile is ax = 0 and ay = -g .
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To an observer who sees you walking by, the ball follows a curved path, as shown. 
The precise shape of this curved path—a parabola—is verified in the next section. 
Additional examples of this principle are shown in FIGURE 4-4.

Enhance Your Understanding (Answers given at the end of the chapter)

2. A sailor drops a pair of binoculars from the “crow’s nest” at the top of a sailing ship’s 
mast. When the ship is at rest, the binoculars land at the base of the mast. If the ship 
is moving forward with constant velocity, and air resistance can be ignored, do the 
binoculars land in front of the mast (toward the front of the ship), at the base of the 
mast, or behind the mast (toward the rear of the ship)? Explain.

Section Review
• Projectiles move under the influence of gravity alone, with a constant downward 

acceleration. The basic equations describing projectile motion are summarized in 
Equations 4-6.

4-3 Zero Launch Angle
A special case of some interest is a projectile launched horizontally, so that the angle 
between the initial velocity and the horizontal is u = 0. We devote this section to a 
brief look at this type of motion.

Equations of Motion
Suppose you are walking with a speed v0 when you release a ball from a height h. If we 
choose ground level to be y = 0, and the release point to be directly above the origin, 
the initial position of the ball is given by

 x0 = 0

▲ FIGURE 4-4 Visualizing Concepts Independence of Motion (a) An athlete jumps upward 
from a moving skateboard. The athlete retains his initial horizontal velocity, and hence remains 
directly above the skateboard at all times. (b) The pilot ejection seat of a jet fighter is being 
ground-tested. The horizontal and vertical motions are independent, and hence the test dummy 
is still almost directly above the cockpit from which it was ejected. (notice that air resistance is 
beginning to reduce the dummy’s horizontal velocity.) (c) This rollerblader may not be thinking 
about independence of motion, but the ball she released illustrates the concept perfectly as it 
falls directly below her hand.

(a)    (b)    (c)

◀  FIGURE 4-5 Launch angle of a projectile (a) A projectile launched at an angle above 
the horizontal, u 7 0. A launch below the horizontal would correspond to u 6 0.  
(b) A projectile launched horizontally, u = 0. In this section we consider u = 0. The 
next section deals with u ∙ 0.
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Ball Fired Upward from Moving Cart

Ball Fired Upward from  
Accelerating Cart
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Chapter 2

Encryption

Suppose Alice and Bob share a secret key k. Alice wants to transmit a message m to Bob over a
network while maintaining the secrecy of m in the presence of an eavesdropping adversary. This
chapter begins the development of basic techniques to solve this problem. Besides transmitting a
message over a network, these same techniques allow Alice to store a file on a disk so that no one
else with access to the disk can read the file, but Alice herself can read the file at a later time.

We should stress that while the techniques we develop in this chapter to solve this fundamental
problem are important and interesting, they do not by themselves solve all problems related to
“secure communication.”

• The techniques only provide secrecy in the situation where Alice transmits a single message
per key. If Alice wants to secretly transmit several messages using the same key, then she
must use methods developed in Chapter 5.

• The techniques do not provide any assurances of message integrity: if the attacker has the
ability to modify the bits of the ciphertext while it travels from Alice to Bob, then Bob may
not realize that this happened, and accept a message other than the one that Alice sent. We
will discuss techniques for providing message integrity in Chapter 6.

• The techniques do not provide a mechanism that allow Alice and Bob to come to share a
secret key in the first place. Maybe they are able to do this using some secure network (or
a physical, face-to-face meeting) at some point in time, while the message is sent at some
later time when Alice and Bob must communicate over an insecure network. However, with
an appropriate infrastructure in place, there are also protocols that allow Alice and Bob to
exchange a secret key even over an insecure network: such protocols are discussed in Chapters
21 and 21.12.

2.1 Shannon ciphers and perfect security

2.1.1 Definition of a Shannon cipher

The basic mechanism for encrypting a message using a shared secret key is called a cipher (or
encryption scheme). In this section, we introduce a slightly simplified notion of a cipher, which we
call a Shannon cipher.

A Shannon cipher is a pair E = (E,D) of functions.
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• The function E (the encryption function) takes as input a key k and a message m (also
called a plaintext), and produces as output a ciphertext c. That is,

c = E(k,m),

and we say that c is the encryption of m under k.

• The function D (the decryption function) takes as input a key k and a ciphertext c, and
produces a message m. That is,

m = D(k, c),

and we say that m is the decryption of c under k.

• We require that decryption “undoes” encryption; that is, the cipher must satisfy the following
correctness property: for all keys k and all messages m, we have

D(k, E(k, m) ) = m.

To be slightly more formal, let us assume that K is the set of all keys (the key space),M is the
set of all messages (the message space), and that C is the set of all ciphertexts (the ciphertext
space). With this notation, we can write:

E : K ×M→ C,
D : K × C →M.

Also, we shall say that E is defined over (K,M, C).
Suppose Alice and Bob want to use such a cipher so that Alice can send a message to Bob.

The idea is that Alice and Bob must somehow agree in advance on a key k ∈ K. Assuming this is
done, then when Alice wants to send a message m ∈M to Bob, she encrypts m under k, obtaining
the ciphertext c = E(k,m) ∈ C, and then sends c to Bob via some communication network. Upon
receiving c, Bob decrypts c under k, and the correctness property ensures that D(k, c) is the same
as Alice’s original message m. For this to work, we have to assume that c is not tampered with in
transit from Alice to Bob. Of course, the goal, intuitively, is that an eavesdropper, who may obtain
c while it is in transit, does not learn too much about Alice’s message m — this intuitive notion is
what the formal definition of security, which we explore below, will capture.

In practice, keys, messages, and ciphertexts are often sequences of bytes. Keys are usually
of some fixed length; for example, 16-byte (i.e., 128-bit) keys are very common. Messages and
ciphertexts may be sequences of bytes of some fixed length, or of variable length. For example, a
message may be a 1GB video file, a 10MB music file, a 1KB email message, or even a single bit
encoding a “yes” or “no” vote in an electronic election.

Keys, messages, and ciphertexts may also be other types of mathematical objects, such as
integers, or tuples of integers (perhaps lying in some specified interval), or other, more sophisticated
types of mathematical objects (polynomials, matrices, or group elements). Regardless of how fancy
these mathematical objects are, in practice, they must at some point be represented as sequences
of bytes for purposes of storage in, and transmission between, computers.

For simplicity, in our mathematical treatment of ciphers, we shall assume that K, M, and C
are sets of finite size. While this simplifies the theory, it means that if a real-world system allows
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messages of unbounded length, we will (somewhat artificially) impose a (large) upper bound on
legal message lengths.

To exercise the above terminology, we take another look at some of the example ciphers discussed
in Chapter 1.

Example 2.1. A one-time pad is a Shannon cipher E = (E,D), where the keys, messages, and
ciphertexts are bit strings of the same length; that is, E is defined over (K,M, C), where

K :=M := C := {0, 1}L,

for some fixed parameter L. For a key k ∈ {0, 1}L and a message m ∈ {0, 1}L the encryption
function is defined as follows:

E(k,m) := k ⊕m,
and for a key k ∈ {0, 1}L and ciphertext c ∈ {0, 1}L, the decryption function is defined as follows:

D(k, c) := k ⊕ c.

Here, “⊕” denotes bit-wise exclusive-OR, or in other words, component-wise addition modulo 2,
and satisfies the following algebraic laws: for all bit vectors x, y, z ∈ {0, 1}L, we have

x⊕ y = y ⊕ x, x⊕ (y ⊕ z) = (x⊕ y)⊕ z, x⊕ 0L = x, and x⊕ x = 0L.

These properties follow immediately from the corresponding properties for addition modulo 2.
Using these properties, it is easy to check that the correctness property holds for E : for all k,m ∈
{0, 1}L, we have

D(k, E(k, m) ) = D(k, k ⊕m) = k ⊕ (k ⊕m) = (k ⊕ k)⊕m = 0L ⊕m = m.

The encryption and decryption functions happen to be the same in this case, but of course, not all
ciphers have this property. 2

Example 2.2. A variable length one-time pad is a Shannon cipher E = (E,D), where the
keys are bit strings of some fixed length L, while messages and ciphertexts are variable length bit
strings, of length at most L. Thus, E is defined over (K,M, C), where

K := {0, 1}L and M := C := {0, 1}≤L.

for some parameter L. Here, {0, 1}≤L denotes the set of all bit strings of length at most L (including
the empty string). For a key k ∈ {0, 1}L and a message m ∈ {0, 1}≤L of length `, the encryption
function is defined as follows:

E(k,m) := k[0 . . `− 1]⊕m,
and for a key k ∈ {0, 1}L and ciphertext c ∈ {0, 1}≤L of length `, the decryption function is defined
as follows:

D(k, c) := k[0 . . `− 1]⊕ c.
Here, k[0 . . ` − 1] denotes the truncation of k to its first ` bits. The reader may verify that the
correctness property holds for E . 2
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