

Introductory lecture on cryptography elements

Cryptography module

Co-funded by the Erasmus+ Programme of the European Union

Cryptography used to ensure secure communication (confidentiality, integrity, authenticity)

- Internet security
- Credit cards (smart cards)
- Electronic passports
- Electronic currency (bitcoins)
- Electronic voting
- Medical data

Figure out the answer to the riddle below. Use the cipher table to show how the letters were encrypted. Find a pattern to complete the table.

Cryptography

What is a clumsy bee?

B CVNCMJOH CFF

а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	v	w	x	у	z

Cryptography

Figure out the answer to the riddle below.

Use the cipher table to show how the letters were encrypted.

Find a pattern to complete the table.

What is a clumsy bee?

В	С	V	Ν	С	М	J	0	Н	С	F	F

а	b	С	d	е	f	g	h	i	j	k	I	m	n	ο	р	q	r	s	t	u	v	w	x	у	z

Cryptography

Figure out the answer to the riddle below. Use the cipher table to show how the letters were encrypted.

Find a pattern to complete the table.

What is a clumsy bee?

а	b	u	m	b	I	i	n	g	b	е	е
В	С	V	Ν	С	М	J	0	Η	С	F	F

а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	s	t	u	v	w	x	у	z

Cryptography

How do we encrypt?

а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	s	t	u	v	w	x	у	z
В	С	D	Е	F	G	н	I	J	к	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	Α

Cryptography

How do we **encrypt**?

- Shift the alphabet by 1
- C = m +1 (mod 26)

Example: the 11th letter is encrypted by the 12th letter (k -> L)

а	b	С	d	е	f	g	h	i	j	k	Ι	m	n	0	р	q	r	S	t	u	v	W	х	у	z
В	С	D	Е	F	G	Н	I	J	к	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ	Α

Cryptography

We can shift by another number k

Additive Ciphers

- Plaintext **m**
- Ciphertext C
- Key **k**
- **Encryption** C = m+k (mod 26)
- **Decryption** m = C-k (mod 26)

Example: Shifting by 11

а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	v	W	x	у	z
L	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ	Α	В	С	D	Ε	F	G	Н	I	J	K

L MFXMWTYR MPP

Cryptography

PROBLEM with this system

To determine what the shift is, we need to guess only one letter

(...there are 25 guesses at most!)

L	М	F	Х	М	W	Т	Y	R	М	Ρ	Ρ

Cryptography

We need to add some more confusion ...

Multiplicative Ciphers

- Plaintext **m**
- CIPHERTEXT C
- Key k
- **Encryption** $C = m^*k \pmod{26}$
- **Decryption** $m = C^{k^{-1}} \pmod{26}$

Cryptography

Multiplicative Ciphers (examples of enc dec)

- Plaintext m
- CIPHERTEXT C
- Key k (here k=5)

Encryption $C = m^*k \pmod{26}$

	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	v	W	х	у	z
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	0	5	10	15	20	25	4	9	14	19	24	3	8	13	18	23	2	7	12	17	22	1	6	11	16	21
7	Α	F	Κ	Ρ	U	Ζ	Е	J	0	Т	Υ	D	T	Ν	S	Х	С	Н	Μ	R	W	В	G	L	Q	V

 $m = C^*k^{-1} \pmod{26}$ Decryption

 $5 * 21 = 105 \pmod{26} = 1 \pmod{26} => k^{-1} = 21 \text{ i.e. } 21 \text{ is the multiplicative inverse of } k=5$ For example to decipher $D => 3 * 21 \pmod{26} = 63 \pmod{26} = 11 \pmod{26} => 1$

Cryptography

Multiplicative Ciphers

- The KEY has to be coprime with 26 (alphabet length)
 - \circ $\,$ $\,$ The possible keys are only the numbers coprime with 26 $\,$
- If not, encryption is NOT injective
 - Example (table below): the KEY is 2 (*not coprime with 26*).
 Because of the modulo operation the encryption produces only half of the letters.

Encryption $C = m^*k \pmod{26}$

L	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	v	W	х	у	z
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	0	2	4	6	8	10	12	14	16	18	20	22	24	0	2	4	6	8	10	12	14	16	18	20	22	24
♦	Α	С	Е	G	1	K	Μ	0	Q	S	U	W	Ζ	Α	С	Е	G	I	K	М	0	Q	S	U	W	Ζ

k = 2 example $a \Rightarrow A$, but also $n \Rightarrow A$ because $13^{2}=26=0 \mod 26$

in STEM for Teaching

Problem:

Each plaintext letter is always encrypted with the same ciphertext letter.

Solution:

Polyalphabetic Ciphers like the Vigenere Code

Each plaintext letter is encrypted by different ciphertext letters.

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	P	Q	R	S	Т	υ	v	w	х	Y	Z
Α	Α	В	С	D	E	F	G	H	Ι	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
B	В	С	D	E	F	G	Η	Ι	J	Κ	L	Μ	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z	Α
С	С	D	E	F	G	H	I	J	K	L	Μ	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z	Α	В
D	D	Е	F	G	H	Ι	J	K	L	Μ	N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	Α	В	С
E	E	F	G	H	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	v	W	Х	Y	Z	Α	В	С	D
F	F	G	Η	I	J	K	L	Μ	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	Α	В	С	D	E
G	G	Н	Ι	J	K	L	Μ	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	Α	В	С	D	E	F
н	Н	I	J	K	L	Μ	N	0	P	Q	R	S	Т	U	V	W	х	Y	Z	Α	В	C	D	E	F	G
I	Ι	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	Α	В	С	D	E	F	G	Η
J	J	K	L	Μ	N	0	Р	Q	R	S	T	U	V	W	х	Y	Z	Α	В	С	D	E	F	G	Н	Ι
K	K	L	М	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	Α	B	С	D	E	F	G	Н	Ι	J
L	L	Μ	Ν	0	P	Q	R	S	Т	U	V	W	X	Y	Z	Α	B	С	D	E	F	G	Η	Ι	J	K
Μ	М	Ν	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D	E	F	G	H	Ι	J	K	L
N	Ν	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	B	С	D	E	F	G	H	I	J	K	L	Μ
0	0	Р	Q	R	S	T	U	V	W	X	Y	Z	Α	B	С	D	E	F	G	Η	I	J	K	L	Μ	Ν
P	P	Q	R	S	T	U	V	W	X	Y	Z	Α	B	C	D	E	F	G	Η	Ι	J	K	L	Μ	N	0
Q	Q	R	S	T	U	V	W	X	Y	Z	Α	B	C	D	E	F	G	H	Ι	J	K	L	Μ	Ν	0	Р
R	R	S	Т	U	V	W	X	Y	Z	Α	B	С	D	E	F	G	H	I	J	K	L	M	N	0	P	Q
S	S	Т	U	V	W	X	Y	Z	Α	B	C	D	E	F	G	Η	I	J	K	L	М	N	0	P	Q	R
Т	Т	U	V	W	X	Y	Z	A	B	С	D	E	F	G	Η	Ι	J	K	L	Μ	N	0	Р	Q	R	S
U	U	V	W	X	Y	Z	Α	B	С	D	E	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	Т
v	V	W	X	Y	Z	A	B	C	D	E	F	G	H	Ι	J	K	L	M	N	0	Р	Q	R	S	Т	U
w	W	X	Y	Z	A	B	C	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V
x	X	Y	Z	Α	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W
Y	Y	Z	A	B	C	D	E	F	G	Η	Ι	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X
Z	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y

But even that was broken and

COMPUTER SCIENCE came in the 50s

Interdisciplinarity in STEM for Teaching Cryptography

-

Binary ciphers

- Every letter is translated to a binary vector
- The message is splitted into blocks
- Every block is encrypted using a binary cipher

ASCII Alphabet			
A	1000001	N	1001110
B	1000010	0	1001111
cl	1000011	P	1010000
D	1000100	Q	1010001
Εİ	1000101	R	1010010
Εİ	1000110	S	1010011
G	1000111	Т	1010100
н	1001000	U	1010101
r	1001001	v	1010110
J	1001010	w	1010111
ĸ	1001011	X	1011000
L	1001100	Y	1011001
мΙ	1001101	z	1011010

Binary ciphers

- Every letter is translated to a binary vector
- The message is splitted into blocks
- Every block is encrypted using a binary cipher

Cipher Block Chaining (CBC) mode encryption

Interdisciplinarity in STEM for Teaching

Cryptography

Nowadays we are using **AES** (Advanced Encryption Standard)

Byte Sub

Shift Row

Mix Column

Add Round Key

SYMMETRIC CRYPTOSYSTEM

SYMMETRIC CRYPTOSYSTEM

ASYMMETRIC CRYPTOSYSTEM

Kerckhoff's Principle

A cryptosystem should be secure even if everything about the system EXCEPT THE KEY is public knowledge

Engineers should design their system assuming that their opponent knows the system in detail

Credits for the images

- Bee: Openclipart: Cartoon Bee is licensed under CC0 1.0 Universal (CC0 1.0). Public Domain Dedication
- Encryption using the Cipher Block Chaining (CBC) mode: By WhiteTimberwolf (SVG version) PNG version, Public Domain, <u>https://commons.wikimedia.org/w/index.php?curid=26434096</u>
- AES (Rijndael) Round Function: By John Savard <u>https://www.eng.tau.ac.il/~yash/crypto-netsec/rijndael.htm</u>, CC0, <u>https://commons.wikimedia.org/w/index.php?curid=103718081</u>
- SubBytes operation for AES. By User:Matt Crypto Own work, Public Domain <u>https://commons.wikimedia.org/w/index.php?curid=1118913</u>
- ShiftRows operation for AES. By User:Matt Crypto Own work, Public Domain, <u>https://commons.wikimedia.org/w/index.php?curid=1118782</u>
- MixColumns operation for AES. By User:Matt Crypto Own work, Public Domain, <u>https://commons.wikimedia.org/w/index.php?curid=1118874</u>
- AddRoundKey operation for AES. By User:Matt Crypto Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1118831
- EDSAC: <u>Copyright Computer Laboratory</u>, <u>University of Cambridge</u>. <u>Reproduced by permission</u>. CC BY 2.0, <u>https://commons.wikimedia.org/w/index.php?curid=432935</u>

