
Computational complexity and one-way
functions in cryptography
Fibonacci numbers
In mathematics, the Fibonacci numbers - commonly denoted - form a sequence called the𝐹

𝑛

Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1. That is

for .𝐹
0

= 0 𝐹
1

= 1 𝐹
𝑛

= 𝐹
𝑛−1

+ 𝐹
𝑛−2

𝑛 > 1

The beginning of the sequence is thus:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Two of the many different algorithms (and, so, computer programs) to compute Fibonacci numbers
are the following (here written in Python)

def fibo1(n):
if n<2:

return n
return fibo1(n-1) + fibo1(n-2)

def fibo2(n):
a, b = 1, 0
while n > 1:

a, b = a+b, a
n = n - 1

return a

In the code here
https://mybinder.org/v2/gh/michaellodi/RawInterdisciplinaryMaterial/HEAD?labpath=Fibonacci.ipynb
some instructions and functions have been added to compute how much time the two functions
take.
You can Run -> Run all cells and wait around 90 seconds to see the results.

The program helps to experimentally measure and visualize what is called the “computational
complexity” of the two algorithms/functions/programs.

In this case, the complexity is measured by counting the number of steps (we can consider just the
number of sums without loss of generality) and by measuring the time spent executing (a trend
should be visible, although time is heavily machine-dependent).
Complexity is measured with respect to the increase of number n.

https://mybinder.org/v2/gh/michaellodi/RawInterdisciplinaryMaterial/HEAD?labpath=Fibonacci.ipynb

It is infeasible to use fibo1 for not-so-big numbers like 40 or greater.

Factorization
Only in February 2020, with months of huge computing time, the number
21403246502407449612644230728393335630086147151447550177977549208814180234471401
36643345519095804679610992851872470914587687396261921557363047454770520805119056
49310668769159001975940569345745223058932597669747168173806936489469987157849497
5937497937

has been factored for the first time into its two prime factors:
64135289477071580278790190170577389084825014742943447208116859632024532344630238
623598752668347708737661925585694639798853367 *
33372027594978156556226010605355114227940760344767554666784520987023841729210037
080257448673296881877565718986258036932062711

However, it is relatively easy for a computer to perform this multiplication (at least it is
straightforward and almost instantaneous in Python3 (click to run)).

Here
https://mybinder.org/v2/gh/michaellodi/RawInterdisciplinaryMaterial/HEAD?labpath=Factorization.ipynb
you can try both a naive algorithm and one of the fastest known algorithms for factoring numbers in
primes.

http://pythontutor.com/visualize.html#code=print%2864135289477071580278790190170577389084825014742943447208116859632024532344630238623598752668347708737661925585694639798853367%20*%2033372027594978156556226010605355114227940760344767554666784520987023841729210037080257448673296881877565718986258036932062711%29&cumulative=false&curInstr=1&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
https://mybinder.org/v2/gh/michaellodi/RawInterdisciplinaryMaterial/HEAD?labpath=Factorization.ipynb

