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Some definitions

A simulation is a computer-implemented method for exploring the 
properties of a mathematical model where analytical methods are not 

available (Humphreys, 1991)

A simulation imitates a process by means of another process 
(Hartmann, 1996)

A system S provides a core simulation of an object or process B if and only 
if S is a concrete computational device that produces, via a temporal 

process, solutions for a computational model that correctly represents B, 
either dynamically or statically. If, in addition, the computational model 

used by S correctly represents the structure of a real system R, then S 
provides a core simulation of a system R with respect to B (Humphreys, 

2004)



A possible definition of simulation

A system S is a simulation of an 
object or process M if and only 
if S is a concrete 
computational device that 
produces, by means of a 
temporal process, solutions for 
a computational model that 
correctly represents M. 
If, in addition, the 
computational model used by 
S correctly represents the 
structure of a real system R, 
then S provides a simulation of 
an R system with respect to 
the M model.

R • the real system

M • the object or process model

Mc • the computational model

S • the simulation

(from Humphreys, 2004)



A possible definition of simulation
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A possible definition of simulation

• According to this definition, the 
purpose of a simulation is to solve 
a computational model, find 
solutions to it 

• The solution is derived in a time-
based, step-by-step process

• Simulation is of particular interest 
when analytical methods are not 
available 

• This is the case with complex 
systems

A system S is a simulation of an 
object or process M if and only 
if S is a concrete 
computational device that 
produces, by means of a 
temporal process, solutions for 
a computational model that 
correctly represents M. 
If, in addition, the 
computational model used by 
S correctly represents the 
structure of a real system R, 
then S provides a simulation of 
an R system with respect to 
the M model.



Uses of simulations

- In science, simulations are used for many purposes (Grüne-Yanoff & 
Weirich, 2010):

- Prediction of a future event/behaviour (within a certain 
probability)

- Explanation of a concrete phenomenon, showing its history, 
identifying the causal relationships that produced it

- Decision-making in contexts of uncertainty and complexity



Two examples

of simulations of complex systems



Example 1: Lotka-Volterra



Model of Lotka-Volterra

- Describes the dynamics of complex biological systems in which two 
species interact one as prey, the other as predator (Volterra, 1926)

- Assumptions on which the model is based:
- Prey has unlimited food
- Predators' only source of livelihood is prey
- Prey only die a natural death
- No evolutionary mechanisms are in place
- The external environment does not change in favour of any of the 

species

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)

x(t) = number of prey at time 
t

dx(t)/dt = rate of change of 
the prey population over 
time

y(t) = number of predators at 
time t

dy(t)/dt = rate of change of 
the predator population 
over time t

Coefficients:
a = birth of prey
b = predation
c = encounter between 

prey and predators
d = natural death of 

predators



From model to simulation

- The model is expressed as a system of two differential 
equations

- In this particular case, it is possible to solve the model 
analytically, i.e. one can express x(t) or y(t) as functions of t, 
x(0) and y(0), but this route is not always possible for complex 
dynamic systems

- Another way is to use simulation, which makes use of numerical 
integration methods

From model to simulation...



Lotka-Volterra simulation

https://sites.google.com/site/biologydarkow/ecology/predato
r-prey-simulation-of-the-lotka-volterra-model

https://sites.google.com/site/biologydarkow/ecology/predator-prey-simulation-of-the-lotka-volterra-model


Lotka-Volterra simulation

https://sites.google.com/site/biologydarkow/ecology/predato
r-prey-simulation-of-the-lotka-volterra-model

https://sites.google.com/site/biologydarkow/ecology/predator-prey-simulation-of-the-lotka-volterra-model


An example of negative feedback!

- Interconnections between predator and prey populations give 
rise to negative feedback

- This simple interaction allows the system to self-regulate and 
remain in balance! 



Example 2: Schelling
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- In this model (Schelling, 1969), an environment consists of two types of 
individuals 
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Schelling model

- In this model (Schelling, 1969), an environment consists of two types of 
individuals 

- At first they are placed randomly on a grid
- At each step, an individual moves from his position if there are more 

than 70% different individuals among his neighbours

Agents placed 
randomly on a grid

x satisfied because 1 
in 2 (50% < 70%) of its 
neighbours is either

x dissatisfied because 
3 out of 4 (75% > 70%) 
of his neighbours are 
either



Schelling simulation

Initial situation: 
mixing

Final situation: 
segregation

https://www.netlogoweb.org/launch#https://www.netlogoweb.org/assets/
modelslib/Sample%20Models/Social%20Science/Segregation.nlogo 

https://www.netlogoweb.org/launch


Let's look 'inside' a NetLogo simulation

It defines new global variables. Global 
variables are 'global' because they are 
accessible by all agents and can be 
used anywhere in a model.
Most often, globals is used to define 
variables or constants that need to be 
used in many parts of the program.

The turtles-own keyword can only be 
used at the beginning of a program, 
before any function definitions. It defines 
the variables belonging to each turtle.





The setup 
procedure is 
the one that is 
run when the 
setup button is 
pressed.



The go procedure 
is the one that is 
run when the go 
button is pressed.



Advances the tick counter by 
one and updates all plots. If 
the tick counter has not been 
started yet with reset-ticks, an 
error results (see setup).
Normally tick goes at the end 
of a go procedure.









An example of an emerging property!

- An initially mixed population gives rise to an environment in which there 
are separate groups of individuals of the same category

- An albeit weak preference of individuals is sufficient to cause a 
segregation of the two types of individuals 

- Segregation is an emergent property because:
- It is typical of the macroscopic scale of the system
- It is not due to any centralised control or explicit decision of the two 

groups as a whole
- There is no direct causal link between the rules on individuals 

(microscopic level) and the aggregate result of the evolution of the 
system macroscopic level)



What differences between the two models?



- In these simulations, the 
dynamics of a target 
system is described by 
means of differential 
equations that, when 
solved numerically, allow 
the future state of the 
system to be derived from 
the present state

- Variables related to the 
macroscopic system 
appear in the equations

- The target system is 
modelled as an 
undifferentiated 'whole'.

Agent-based simulationsEquation-based simulations

- In these simulations, the 
dynamics of a target system 
are generated by making 
individual agents evolve 
according to their own rules 
of behaviour

- A description of the 
macroscopic properties of 
the system that 'emerge' as 
a result of running the 
simulation is missing

- The system is modelled as a 
group of individuals/agents



Equation-based and agent-based simulations in 
educational research

• From the conceptual and disciplinary distinction between these two 
approaches...

• ... to the characterisation of students' forms of reasoning about 
complex phenomena (Jacobson & Wilensky, 2006)

Both are essential for a deep understanding of the complexity of systems 
(complementarity between macro and micro reasoning) (Stroup & 

Wilensky, 2014)

Macro 
reasoning

Micro 
reasoning

• System as population 
• Focus on macroscopic 

properties

• System as a set of individual 
components 

• Interaction between 
components is determined by 
rules



Student difficulties

• Distinguishing the 'levels' of which the system is composed
• Formulating explanations of complex phenomena: 

tendency to slippage from the microscopic level of parts 
to the macroscopic level of systemic behaviour

• Recognising causal relationships within the system

Macro 
reasoning

Micro 
reasoning

Need to build 
dynamic relationships 

between these two 
planes of reasoning



Let us try to generate an agent-based simulation 
equivalent for the Lotka-Volterra model. 

How would you proceed? 

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)



Different rules for wolves and sheep

Wolf: 
- He starts his life with a random 

amount of energy
- With each tick of the simulation, it 

moves to an adjacent cell and its 
energy decreases by E1

- If a sheep is in the same box, it eats 
it and its energy increases by E 2

- When the energy reaches 0, the 
wolf dies

- At any given time, it has a 
probability R1 of reproducing itself

Sheep: 
- With each tick, it moves to an 

adjacent cell
- At any given time, it has a 

probability R2 of reproducing 
itself



Differences between equation-based and agent-based 
models

Wolf: 
- He starts his life with a random amount of 

energy
- With each tick of the simulation, it moves to 

an adjacent cell and its energy decreases by 
E1

- If a sheep is in the same box, it eats it and its 
energy increases by E 2

- When the energy reaches 0, the wolf dies
- At any given time, it has a probability R1 of 

reproducing itself

Sheep: 
- With each tick, it moves to an adjacent 

cell
- At any given time, it has a probability R2 of 

reproducing itself

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)

x(t) = number of prey at time t
dx(t)/dt = rate of change of the prey 

population over time
y(t) = number of predators at time t
dy(t)/dt = rate of change of the predator 

population over time t

Coefficients:
a = birth frequency of prey 
b = predation frequency
c = birth frequency of predators
d = frequency of natural death of predators



Differences between equation-based and agent-based 
models

(every single) Wolf: 
- He starts his life with a random amount of 

energy
- With each tick of the simulation, it moves to 

an adjacent cell and its energy decreases by 
E1

- If a sheep is in the same box, it eats it and its 
energy increases by E 2

- When the energy reaches 0, the wolf dies
- At any given time, it has a probability R1 of 

reproducing itself

(every single) sheep: 
- With each tick, it moves to an adjacent 

cell
- At any given time, it has a probability R2 of 

reproducing itself

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)

x(t) = number of prey at time t
dx(t)/dt = rate of change of the prey 

population over time
y(t) = number of predators at time t
dy(t)/dt = rate of change of the predator 

population over time t

Coefficients:
a = birth frequency of prey 
b = predation frequency
c = birth frequency of predators
d = frequency of natural death of predators



Differences between equation-based and agent-based 
models

(every single) Wolf: 
- He starts his life with a random amount of 

energy
- With each tick of the simulation, it moves to 

an adjacent cell and its energy decreases by 
E1

- If a sheep is in the same box, it eats it and its 
energy increases by E 2

- When the energy reaches 0, the wolf dies
- At any given time, it has a probability R1 of 

reproducing itself

(every single) sheep: 
- With each tick, it moves to an adjacent 

cell
- At any given time, it has a probability R2 of 

reproducing itself

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)

x(t) = number of prey at time t
dx(t)/dt = rate of change of the prey 

population over time
y(t) = number of predators at time t
dy(t)/dt = rate of change of the predator 

population over time t

Coefficients:
a = birth frequency of prey 
b = predation frequency
c = birth frequency of predators
d = frequency of natural death of predators

In the equation model, only macroscopic 
quantities appear, whereas in the agent 

model, the focus is on the individual to whom 
the rules are associated



Differences between equation-based and agent-based 
models

Wolf: 
- He starts his life with a random amount of 

energy
- With each tick of the simulation, it randomly 

moves to an adjacent cell and its energy 
decreases by E1

- If a sheep is in the same box, it eats it and its 
energy increases by E 2

- When the energy reaches 0, the wolf dies
- At any given time, it has a probability R1 of 

reproducing itself

Sheep: 
- With each tick, it moves to an adjacent 

cell
- At any given time, it has a probability R2

of reproducing itself

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)

x(t) = number of prey at time t
dx(t)/dt = rate of change of the prey 

population over time
y(t) = number of predators at time t
dy(t)/dt = rate of change of the predator 

population over time t

Coefficients:
a = birth frequency of prey 
b = predation frequency
c = birth frequency of predators
d = frequency of natural death of predators



Differences between equation-based and agent-based 
models

Wolf: 
- He starts his life with a random amount of 

energy
- With each tick of the simulation, it randomly 

moves to an adjacent cell and its energy 
decreases by E1

- If a sheep is in the same box, it eats it and its 
energy increases by E 2

- When the energy reaches 0, the wolf dies
- At any given time, it has a probability R1 of 

reproducing itself

Sheep: 
- With each tick, it moves to an adjacent 

cell
- At any given time, it has a probability R2

of reproducing itself

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)

x(t) = number of prey at time t
dx(t)/dt = rate of change of the prey 

population over time
y(t) = number of predators at time t
dy(t)/dt = rate of change of the predator 

population over time t

Coefficients:
a = birth frequency of prey 
b = predation frequency
c = birth frequency of predators
d = frequency of natural death of predators

The equation model is deterministic while the 
agent model is probabilistic



https://www.netlogoweb.org/launch#https://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Wolf%20Sheep%20Predation.nlogo 

https://www.netlogoweb.org/launch


Where do we find these rules in the simulation?



Where do we find these rules in the simulation?



What happens to the system with these rules?

• The rules of the model reproduce 
the oscillation of the two 
populations we observed earlier

• This pattern, however, is 
only transient and unstable

• Or the number of sheep 
"explodes" by increasing
exponentially...



What happens to the system with these rules?

• Or both populations end up 
going extinct after a few swings...

• Why does this happen?

• What should we 
fix in our 
model? 



Actually, the behaviour observed with the simulation is
not so absurd...

• In 1934, the first laboratory experiments on interactions between 
prey and predators found the same result!

• Either the predators would eat all 
the prey and then starve to 
death, or the predators would 
die first and the prey would 
multiply disproportionately

• What is similar between laboratory and simulation, and different 
from the natural environment?

• What is similar between laboratory and simulation, and different 
from the assumptions of the mathematical model?



Laboratory vs. natural environment

• In the laboratory, there are no limits to prey population growth
• In nature yes (finite resources and density)

• In the laboratory, there is no 'environmental complexity': prey 
cannot escape predators by taking refuge in a certain part of 
the environment

• Our agent simulation also experiences the same limitations, so 
we reproduced the behaviour of the experiment



A struggle between models

• Yet the Lotka-Volterra model also had the same assumptions but 
the solutions
of the equations are stable and
reproduce the behaviour
in nature, but not that
in the laboratory!

• Is it the Lotka-Volterra model 
to be 'false' or the 
agent?

• Compared to agent simulations, classical equation models 
make it very easy to obtain implausible macroscopic results!



A struggle between models

• This happens because by modelling to 
equation, I focus on what I want to 
achieve (stability)

• Whereas in the agent approach, I am 
only concerned with assigning rules, 
without any assumptions at macro level

• It is therefore possible that there are 
simply NO rules at the local level that 
produce the result of stability that the 
equation model predicted!



Differences between equation-based and agent-based 
models

Wolf: 
- He starts his life with a random amount of 

energy
- With each tick of the simulation, it moves to 

an adjacent cell and its energy decreases by 
E1

- If a sheep is in the same box, it eats it and its 
energy increases by E 2

- When the energy reaches 0, the wolf dies
- At any given time, it has a probability R1 of 

reproducing itself

Sheep: 
- With each tick, it moves to an adjacent 

cell
- At any given time, it has a probability R2 of 

reproducing itself

𝑑𝑥 𝑡
𝑑𝑡 = 𝑎𝑥 𝑡 − 𝑏𝑦 𝑡 𝑥 𝑡

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑐𝑥 𝑡 𝑦 𝑡 − 𝑑𝑦(𝑡)

x(t) = number of prey at time t
dx(t)/dt = rate of change of the prey 

population over time
y(t) = number of predators at time t
dy(t)/dt = rate of change of the predator 

population over time t

Coefficients:
a = birth frequency of prey 
b = predation frequency
c = birth frequency of predators
d = frequency of natural death of predators

The equation model contains a pre-judgement 
on the system (top-down), whereas the agent 

model produces everything from the rules 
(bottom-up)



Let's try some new rules

Wolf: 
- He starts his life with a random 

amount of energy
- With each tick of the simulation, it 

moves to an adjacent cell and its 
energy decreases by E1

- If a sheep is in the same box, it eats 
it and its energy increases by E 2

- When the energy reaches 0, the 
wolf dies

- At any given time, it has a 
probability R1 of reproducing itself

Sheep: 
- He starts his life with a random 

amount of energy
- With each tick, it moves to an 

adjacent cell and its energy 
decreases by E3

- If grass is found in the same box, 
it eats it and its energy increases 
by E4

- When the energy reaches 0, the 
sheep dies

- At any given time, it has a 
probability R2 of reproducing 
itself

Earth: 
- If it is green: do nothing
- If it is brown, wait X tick and then turn green



What do we get?

• With these new rules, we have 
stable fluctuations between the 
amount of prey and predators 
(and grass!).

• By limiting the sheep's 
resources, you increase their 
chances of survival (paradox of 
enrichment)

• Adding a level of complexity in 
this case led to increased 
stability, not more 'chaos'!



The danger of curve fitting

• In attempting to reproduce globally observed behaviour with 
rules, one runs the risk of arriving at a model that bears a 
superficial resemblance to the system one is trying to model, but 
one achieves this through 'uncorrelated mechanisms'.

• Agent models are less prone to this danger than equation 
models, as they model systems at two levels (underlying 
mechanisms and global behaviour) rather than one (global 
behaviour). 

• To avoid this risk, one should always ask oneself: what have I 
missed about the behaviour of agents? - not, simply, how can I 
change my model to make it behave as I want?

(Wilensy & Reisman, 2006)


