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Some definitions

A simulation is a computer-implemented method for exploring the
properties of a mathematical model where analytical methods are not
available (Humphreys, 1991)
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Some definitions

A simulation imitates a process by
means of another process
(Hartmann, 1996)

Imitative purpose

Simulation need not be
computational

Excludes simulations that use a model
to present the structure (not the
dynamics) of a system



Some definitions

A simulation imitates a process by means of another process
(Hartmann, 1996)

A system S provides a core simulation of an object or process B if and only
if S is a concrete computational device that produces, via a temporal
process, solutions for a computational model that correctly represents B,
either dynamically or stafically. If, in addition, the computational model
used by S correctly represents the structure of areal system R, then S
provides a core simulation of a system R with respect to B (Humphreys,
2004)



A possible definition of simulation

A system S is a simulation of an
object or process M if and only
if Sis a concrete
computational device that
produces, by means of a
temporal process, solutions for
a computational model that
correctly represents M.

If, in addition, the
computational model used by
S correctly represents the
stfructure of areal system R,
then S provides a simulation of

an R system with respect to
the M model.

(from Humphreys, 2004)

e the real system

e the object or process model

* the computational model

e the simulation

CEC
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A possible definition of simulation

A system S is a simulation of an
object or process M if and only
if Sis a concrete
computational device that
produces, by means of a
temporal process, solutions for
a computational model that
correctly represents M.

If, in addition, the
computational model used by
S correctly represents the
structure of areal system R,
then S provides a simulation of

an R system with respect to
the M model.

According to this definition, the
purpose of a simulation is to solve
a computational model, find
solutions to it

The solution is derived in a tfime-
based, step-by-step process

Simulation is of particular interest
when analytical methods are not
available

This is the case with complex
systems



Uses of simulations

- In science, simulations are used for many purposes (Grune-Yanoff &
Weirich, 2010):

- Prediction of a future event/behaviour (within a certain
probability)

- Explanation of a concrete phenomenon, showing its history,
identifying the causal relationships that produced it

- Decision-making in contexts of uncertainty and complexity



Two examples

of simulations of complex systems



Example 1: Lotka-Volterra



Model of Lotka-Volterra

- Describes the dynamics of complex biological systems in which two
species interact one as prey, the other as predator (Volterra, 1926)

- Assumptions on which the model is based:

- Prey has unlimited food

- Predators' only source of livelihood is prey

- Prey only die a natural death

- No evolutionary mechanisms are in place

- The external environment does not change in favour of any of the

species

X(f) = number of prey at time d ( ) Coefficients:

t x(t o ’
dx(1)/dt = rate of change of q = ax(t) — by(t)x(t) a = pirth of.prey

the prey population over t b = predation

time C = encounter between
y(t) = number of predators at  dy(t prey and predators

fime t ——==cx(t)y(t) —dy(t)  d=natural death of
dy(t)/dt = rate of change of dt oredators

the predator population
over time t



From model to simulation

- The model is expressed as a system of two differential
equations

- In this particular case, it is possible to solve the model
analytically, i.e. one can express x(t) or y(t) as functions of t,
x(0) and y(0), but this route is not always possible for complex
dynamic systems

- Another way is to use simulation, which makes use of numerical
integration methods

From model to simulation...



Lotka-Volterra simulation

Prey variables
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https://sites.google.com/site/biologydarkow/ecology/predato

r-prey-simulation-of-the-lotka-volterra-model



https://sites.google.com/site/biologydarkow/ecology/predator-prey-simulation-of-the-lotka-volterra-model

Lotka-Volterra simulation

https://sites.google.com/site/biologydarkow/ecology/predato

r-prey-simulation-of-the-lotka-volterra-model



https://sites.google.com/site/biologydarkow/ecology/predator-prey-simulation-of-the-lotka-volterra-model

An example of negative feedback!

- Intferconnections between predator and prey populations give
rise to negative feedback

- This simple intferaction allows the system to self-regulate and
remain in balance!

, The reduction of prey
population causes a
0 reduction of predator

population, since there

is less food to eat
The periodic growth of the

prey population is followed
by the growth of the predator

\
\ population

The reduction of
predator population

lets the prey
population grows




Example 2: Schelling



Schelling model

- In this model (Schelling, 196%), an environment consists of two types of
individuals

- At first they are placed randomly on a grid

- At each step, an individual moves from his position if there are more
than 70% different individuals among his neighbours
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Agents placed
randomly on a grid



Schelling model
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Schelling model

- In this model (Schelling, 196%), an environment consists of two types of
individuals

- At first they are placed randomly on a grid

- At each step, an individual moves from his position if there are more
than 70% different individuals among his neighbours

X1 X10|X[O X[ X[O[X]|O XLX|0|X]|O
00091 O|]0(0]O0 . B O |1 O
XX X [ X X | X

XD X XX X[OIX]|X]|X X|O[X|[X|X

X100 O X[O|O O X 10 0 O
Agents placed x satisfied because 1 x dissatisfied because
randomly on a grid in 2 (50% < 70%) of its 3 out of 4 (75% > 70%)
neighbours is either of his neighbours are

either
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Schelling simulation
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https://www.netlogoweb.org/launch#https://www.netlogoweb.org/assets/
modelslib/Sample%20Models/Social%20Science/Segregation.nlogo



https://www.netlogoweb.org/launch

Let's look ‘inside’ a NetLogo simulation

globals [
percent-similar

percent-unhappy

turtles-own |
happy?

similar-nearby
other-nearby
total-nearby

It defines new global variables. Global
variables are 'global because they are
accessible by all agents and can be

used anywhere in a model.

Most often, globals is used to define
variables or constants that need to be
used in many parts of the program.

The turtles-own keyword can only be
used at the beginning of a program,
before any function definitions. It defines
the variables belonging to each turtle.



globals [
percent-similar on the average, what percent of a turtle's neighbors
are the same color as that turtle?

what percent of the turtles are unhappy?

- me W

percent-unhappy
]

turtles-own [
happy? ; for each turtle, indicates whether at least %-similar-wanted percent of
that turtle's neighbors are the same color as the turtle

how many neighboring patches have a turtle with my color?

how many have a turtle of another color?

sum of previous two variables

-

similar-nearby
other-nearby
total-nearby

e we we



to setup
clear-all
; create turtles on random patches.
ask patches |

set pcolor white
if random 100 < density | ; set the occupancy density
sprout 1 |
; 105 is the color number for "blue"
; 27 is the color number for "orange'
set color one-of [105 27]
set size 1

]

= - BEEEEE The setu
: - - roceduF;e is
update-turtles T == P _
update-globals - W - the one that is
reset-ticks o = ¥ run when the
end R #  setup button is

Number-unhappy

pressed.




s run the model for one tick

to go

if all? turtles [ happy? ] [ stop ]
move-unhappy-turtles
update-turtles

update-globals

tick
end

The go procedure
is the one that is
run when the go
button is pressed.

X siendar




; run the model for one tick

to go
if all? turtles [ happy? ] [ stop ]
move-unhappy-turtles
update-turtles

update-globals )
t i c k tﬁ Mode: Inteticy::/t:ggiommands and Code: Bottom Sesresation o NeLO;lTﬁJ
end

Advances the tick counter by
one and updates all plots. If
the fick counter has not been
started yet with reset-ficks, an
error results (see setup).

Normally tick goes at the end
of a go procedure.




; run the model for one tick
to go
if all? turtles [ happy? ] [ stop ]
| move-unhappy-turtles |
update-turtles
update-globals
tick
end

; unhappy turtles try a new spot

to move-unhappy-turtles
ask turtles with [ not happy? ]

find-new-spot |

end

; move until we find an unoccupied spot

to find-new-spot
rt random-float 360
fd random-float 10
if any? other turtles-here [ find-new-spot ] ; keep going until we

move-to patch-here ; move to center of patch
end



; run the model for one tick
to go

if all? turtles [ happy? ] [ stop ]

move-unhappy-turtles
update-turtles
update-globals
tick
end

to update-turtles

ask turtles [
; 1n next two lines, we use "neighbors" to test the eight patches

r

; surrounding the current patch
set similar-nearby count (turtles-on neighbors) with [ color = [ color ] of myself ]
set other-nearby count (turtles-on neighbors) with [ color != color ] of myself ]

set total-nearby similar-nearby + other-nearby
set happy? similar-nearby >= (%-similar-wanted * total-nearby / 100)

; add visualization here

if visualization = "old" [ set shape "default" set size 1.3 ]
if visualization = "square-x" [
ifelse happy? [ set shape "square" ] [ set shape "X" ]

~

]

end



; run the model for one tick

to go
if all? turtles [ happy? ] [ stop ]
move-unhappy-turtles
update-turtles

(_update-globals J
tick

end

to update-globals
let similar-neighbors sum [ similar-nearby ] of turtles
let total-neighbors sum [ total-nearby ] of turtles
set percent-similar (similar-neighbors / total-neighbors) * 100
set percent-unhappy (count turtles with [ not happy? ]) / (count turtles) * 100

end



An example of an emerging property!

- An initially mixed population gives rise to an environment in which there
are separate groups of individuals of the same category

- An albeit weak preference of individuals is sufficient to cause a
segregation of the two types of individuals

- Segregation is an emergent property because:
- It is typical of the macroscopic scale of the system
- Itis not due to any centralised conftrol or explicit decision of the two
groups as a whole

- There is no direct causal link between the rules on individuals
(microscopic level) and the aggregate result of the evolution of the
system macroscopic level)



What differences between the two models?

Prey variables
Prey birthrate 2 o
0 0,5 1 1,5 2 » 2 1 density % %
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# 300 200 go once ® o
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Equation-based simulations

In these simulations, the
dynamics of a target
system is described by
means of differential
equations that, when
solved numerically, allow
the future state of the
system to be derived from
the present state

Variables related to the
Macroscopic system
appear in the equations

The target systemis
modelled as an
undifferentiated 'whole'.

Agent-based simulations

In these simulations, the
dynamics of a target system
are generated by making
individual agents evolve
according to their own rules
of behaviour

A description of the
macroscopic properties of
the system that 'emerge’ as
a result of running the
simulation is missing

The system is modelled as a
group of individuals/agents



E%ua’rion-based and agent-based simulations in
educational research

« From the conceptual and disciplinary distinction between these two
approaches...

« ... To the characterisation of students' forms of reasoning about
complex phenomena (Jacobson & Wilensky, 2006)

Macro Micro
reasoning reasoning
« System as population « System as a set of individual
« Focus on macroscopic components
properties « Interaction between
components is determined by
rules

Both are essential for a deep understanding of the complexity of systems
(complementarity between macro and micro reasoning) (Stroup &
Wilensky, 2014)



Student difficulties

« Distinguishing the ‘levels’ of which the system is composed

« Formulating explanations of complex phenomena:
tendency to slippage from the microscopic level of parts
to the macroscopic level of systemic behaviour

« Recognising causal relationships within the system

Macro Micro
reasoning reasoning

Need to build
dynamic relationships
between these two
planes of reasoning



dx(t)
dt
dy(t)

T (®)y(t) —dy(t)

= ax(t) — by(£)x(t)

Let us try to generate an agent-based simulation
equivalent for the Lotka-Volterra model.

How would you proceed?



Different rules for wolves and sheep

Wolf:

He starts his life with a random
amount of energy

With each tick of the simulation, it
moves to an adjacent cell and its
energy decreases by E,

If a sheep is in the same box, it eats
it and its energy increases by E ,

When the energy reaches 0, the
wolf dies

At any given time, it has a
probability Ry of reproducing itself

Sheep:

With each tick, it moves to an
adjacent cell

At any given time, it has a
probability R, of reproducing
itself



Differences between equation-based and agent-based

models

dx(t) .
BT ax(t) — by(t)x(t)

dy(t)

- = cx(®)y(t) — dy(t)

x(t) = number of prey at time t

dx(t)/dt = rate of change of the prey
population over time

y(t) = number of predators at time t

dy(t)/dt = rate of change of the predator
population over time t

Coefficients:

a = birth frequency of prey

b = predation frequency

c = birth frequency of predators

d = frequency of natural death of predators

Wolf:

- He starts his life with a random amount of
energy

- With each tick of the simulation, it moves to

an adjacent cell and its energy decreases by
E,

- If asheepisin the same box, it eats it and its

energy increases by E,

- When the energy reaches 0O, the wolf dies
= - Afany given time, it has a probability R, of

reproducing itself

E Sheep:
= - With each fick, it moves to an adjacent
cell

- At any given time, it has a probability R, of

reproducing itself



Differences between equation-based and agent-based

models

dx(t) .
BT ax(t) — by(t)x(t)

dy(t)

- = cx(®)y(t) — dy(t)

x(t) = number of prey at time t

dx(t)/dt = rate of change of the prey
population over time

y(t) = number of predators at time t

dy(t)/dt = rate of change of the predator
population over time t

Coefficients:

a = birth frequency of prey

b = predation frequency

c = birth frequency of predators

d = frequency of natural death of predators

(every single) Wolf:

= - He starts his life with a random amount of
: energy
- With each tick of the simulation, it moves to

an adjacent cell and its energy decreases by
E,

- If asheepisin the same box, it eats it and its

energy increases by E,

- When the energy reaches 0O, the wolf dies
= - Afany given time, it has a probability R, of

reproducing itself

(every single) sheep:
= - With each fick, it moves to an adjacent

cell

- At any given time, it has a probability R, of

reproducing itself



Differences between equation-based and agent-based
models

dx (t) : (every single) Wolf:
dt - ClX(t) N by(t)X(t) - He starts his life with a random amount of
_ . : energy

| Q.

In the equation model, only macroscopic
quantities appear, whereas in the agent

 model, the focus is on the individual fto whom
" the rules are associated
dy

—_—

—— .~ L

.. cell
Coefficients: : . : : -
a = birth frequency of prey = - Afany given fime, it has a probability R, of

b = predation frequency reproducing itself
c = birth frequency of predators .
d = frequency of natural death of predators



Differences between equation-based and agent-based

models

dx(t) .
BT ax(t) — by(t)x(t)

dy(t)

- = cx(®)y(t) — dy(t)

x(t) = number of prey at time t

dx(t)/dt = rate of change of the prey
population over time

y(t) = number of predators at time t

dy(t)/dt = rate of change of the predator
population over time t

Coefficients:

a = birth frequency of prey

b = predation frequency

c = birth frequency of predators

d = frequency of natural death of predators

Wolf:

He starts his life with a random amount of
energy
With each fick of the simulation, it randomly

moves to an adjacent cell and its energy
decreases by E,

If a sheep is in the same box, it eats it and its
energy increases by E,

When the energy reaches 0, the wolf dies

At any given time, it has a probability R, of
reproducing itself

E Sheep:

With each ftick, it moves to an adjacent
cell

At any given time, it has a probability R,
of reproducing itself



Differences between equation-based and agent-based
models

dX(t) — Wolf:
dt - ClX(t) B by(t)X(t) = - He starts his life with a random amount of
- energy

With each fick of the simulation, it randomly
moves to an adjacent cell and its energy

dy(t) e (N ar (£ darl ) decreases by E,

l

« The equation model is deterministic while the
> agent model is probabilistic

y(f
ay
“popuianorTovermme r— . T—
= - With each fick, it moves to an adjacent
cell

Coefficients:

a = birth frequency of prey

b = predation frequency

c = birth frequency of predators

d = frequency of natural death of predators

At any given time, it has a probability R,
of reproducing itself
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Where do we find these rules in the simulation?

to move ; turtle procedure

ask sheep [ rt random 50
> 1t random 50
move £d 1
reproduce-sheep end

v

to reproduce-sheep ; sheep procedure
if random-float 100 < sheep-reproduce [ ; throw "dice" to see if you will reproduce
hatch 1 [ rt random-float 360 fd 1 1 ; hatch an offspring and move it forward 1 step
]

end



Where do we find these rules in the simulation?

to move ; turtle procedure
rt random 50
1t random 50

ask wolves [ a1
move
set energy energy - 1 to eat-sheep ; wolf procedure
let prey one-of sheep-here
eat—Sheer) if prey != nobody [
death ask prey [ die ]
set energy energy + wolf-gain-from-food
reproduce- es ]
] end

to death ; turtle procedure
; when energy dips below zero, die
if energy < 0 [ die ]

end

v

to reproduce-wolves ; wolf procedure
if random-float 100 < wolf-reproduce [
set energy (energy / 2)
hatch 1 [ rt random-float 360 fd 1 ]
]

end



What happens to the system with these rules?

populations
1260 O sheep

« The rules of the model reproduce el
the oscillation of the two
populations we observed earlier

pop.

0 time 395

« This pattern, however, is .
only fransient and unstable

« Orthe number of sheep
"explodes” by increasing
exponentially...

Sheep settings Wolf settings @

populations

33400 sheep
M wolves 3

Mgrass /4| |, *

pop.

0 time 495




What happens to the system with these rules?

Or both populations end up
going extfinct after a few swings...

1400

pop.

populations

620

[ sheep
M wolves

.grass /4

Why does this happen?

What should we
fix in our
model?




Actually, the behaviour observed with the simulation is
not so absurd...

« In 1934, the first laboratory experiments on intferactions between
prey and predators found the same result!

EXPERIMENTAL ANALYSIS OF VITO VOL-
TERRA’S MATHEMATICAL THEORY OF

THE STRUGGLE FOR EXISTENCE « Either the predators would eat dall
el e gatbonroh s prsestss of 16 ke eat the prey and then starve to
Sl Z’L’_iﬁ}liiﬁi‘ﬁeﬂl’iiieir‘i‘;‘v'ifs;npiciefxf‘iiri death, or the predators would
i R e A e die first and the prey would
sl et ol el multiply disproportionately

mathematical theory. All this extensive experimental

« Whatis similar between laboratory and simulation, and different
from the natural environment?

« Whatis similar between laboratory and simulation, and different
from the assumptions of the mathematical model?



Laboratory vs. natural environment

In the laboratory, there are no limits to prey population growth
* In nature yes (finite resources and density)

* In the laboratory, there is no 'environmental complexity': prey
cannot escape predators by taking refuge in a certain part of
the environment

« Our agent simulation also experiences the same limitations, so
we reproduced the behaviour of the experiment



A struggle between models

* Yet the Lotka-Volterra model also had the same assumptions but
the solutions
of the equations are stable and

Dinamica predatore-preda (modello di Lotka-Volterra)

re p o d uce 'I'h e b e h a \/|O ur - Un possibile e famosissimo modello

in nO'I-U re, bU'I' r]O'I' 'I'h(]'l' - Ipotesi su cuisi fonda il modello:

H ) L'eUﬁlrs(c:eoc:S:O?Sch;;(S) :;;;boel:“n:leta;oori sono le preae
I n Th e |O b O ro TO ry! te pred; mtuoci’ono so:o di mirt:n;u:ole i

- Non sono in atto meccanismi evolutivi
- L'ambiente esterno non si modifica a favore di nessuna delle specie

« |sit the Lotka-Volterra model
to be 'false' or the
agente

« Compared to agent simulations, classical equation models
make it very easy to obtain implausible macroscopic results!



A struggle between models

« This happens because by modelling to

equation, | focus on what | want to
achieve (stability)

 Whereas in the agent approach, | am
only concerned with assigning rules,
without any assumptions at macro leve

« |tis therefore possible that there are
simply NO rules at the local level that
produce the result of stability that the
equation model predicted!

COGNITION AND INSTRUCTION, 24(2), 171-209
Copyright © 2006, Lawrence Erlbaum Associates, Inc.

Thinking Like a Wolf, a Sheep,
or a Firefly: Learning Biology
Through Constructing and Testing
Computational Theories—

An Embodied Modeling Approach

Uri Wilensky
Center for Connected Learning and Computer-Based Modeling
Departments of Learning Sciences and Computer Sciences
Northwestern University

Kenneth Reisman
Stanford University



Differences between equation-based and agent-based
models

dX(t) — Wolf:
dt - ClX(t) B by(t)X(t) = - He starts his life with a random amount of
- energy

" - With each fick of the simulation, it moves to

r - ’ Y
The equation model contains a pre-judgement

1 o

1 on the system (top-down), whereas the agent
1 model produces everything from the rules
4 (bottom-up)

— cell —

Coefficients:

a = birth frequency of prey

b = predation frequency

c = birth frequency of predators

d = frequency of natural death of predators

- At any given time, it has a probability R, of
reproducing itself



Let's try some new rules

Wolf:

He starts his life with a random
amount of energy

With each tick of the simulation, it
moves to an adjacent cell and its

energy decreases by E;

If a sheep is in the same box, it eats

it and its energy increases by E »

When the energy reaches 0, the
wolf dies

At any given time, it has a

probability Ry of reproducing itself

Earth:

If it is green: do nothing

Sheep:

He starts his life with a random
amount of energy

With each tick, it moves to an
adjacent cell and its energy
decreases by Ej;

If grass is found in the same box,
it eats it and its energy increases
by E4

When the energy reaches 0, the
sheep dies

At any given time, it has a
probability R, of reproducing
itself

If it is brown, wait X fick and then turn green



What do we get?

populations

« With these new rules, we have 357 [ sheep
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« By limiting the sheep's g
resources, you increase their
chances of survival (paradox of
enrichment)

« Adding a level of complexity in
this case led to increased
stability, not more 'chaos'!




The danger of curve fitting

« |In attempting to reproduce globally observed behaviour with
rules, one runs the risk of arriving at a model that bears @
superficial resemblance o the system one is trying to model, but
one achieves this through 'uncorrelated mechanisms'.

« Agent models are less prone to this danger than equation
models, as they model systems at two levels (underlying
mechanisms and global behaviour) rather than one (global
behaviour).

« To avoid this risk, one should always ask oneself: what have |
missed about the behaviour of agents< - not, simply, how can |
change my model to make it behave as | want?

(Wilensy & Reisman, 2006)



