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Equation-based models



(Almost) 100 years of epidemic models

« (Kermack & McKendrick, 1927) first mathematical model that described
the evolution of an epidemic

A Contribution to the Mathematical Theory of Epidemics

W. O. Kermack, A. G. McKendrick

Proceedings of the Roval Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, Volume 115, Issue 772 (Aug. 1, 1927), 700-721.

« Numerous versions of this model to suit various epidemiological contexts
(also COVID-19)

 The basic idea, however, remained that of Kermack and McKendrick's
1927 paper



The SIR model (Kermack & McKendrick, 1927)

A population is divided into three compartments

N
e Susceptible = compartment of healthy individuals who
can be infected and contfract the disease

* Infected = compartment of individuals who have
contfracted the disease and can transmit it fo others

J

e Removed = compartment that includes both individuals
who have recovered and are therefore immune to the
disease and those who have died of the disease




The SIR model (Kermack & McKendrick, 1927)

The time evolution of these three compartments is described by a system
of three differential equations

as)  BI®)S(E)

dt N

di(t) _ BIDS(E)

= yI(t)

dR(t)

—— = YI(t)
S(t)+I(t)+R(t) =N = cost o




The assumptions underlying the model

« The population is isolated

 Birth or death dynamics (from causes other than illness) are neglected:
the sum of individuals in the compartments is constant

« The population is completely mixed (full mixing hypothesis): individuals

with whom a susceptible person has contact are chosen at random in
the population

« Allindividuals have the same number of contacts with other individuals
in the same time period

« The number of contacts between individuals does not vary according
to the state of the disease: an infected individual has the same
contacts as a susceptible or cured individual

« Allinfected individuals fransmit the disease with equal probability
« All susceptible individuals are equally likely to contract the disease
« The disease has no incubation period

« Once cured, an individual is immediately immune to the disease



The results of applying the model

« At the beginning of the epidemic, the number of Ss will gradually
decrease due to the contagions, while the class of Is will swell for the

same reason.

« Asthe l'sincrease, the greater the probability of an S being infected,
and therefore the increase in I's will initially tend to accelerate

« At some point, however, some
individuals will begin to move
from the I-class to the R-class
because they have healed or
died in the meantime.

 The number of susceptible is
always decreasing and the
number of removed is always
increasing

http://misterpalomar.blogspot.com/2020/02/la-matematica-

delle-epidemie-parte-prima.html
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http://misterpalomar.blogspot.com/2020/02/la-matematica-delle-epidemie-parte-prima.html

How would you modify the model (the e uations) to
distinguish between the dead and the healed*

sty BIBS(®)

dt N .
di(t) _ BI(E)S(t) s 1 )
— = vI(t)




The SIRD model




Other variations

https://www.epicx-lab.com/uploads/9/6/9/4/9624133/inserm-covid-
19 report lockdown idf-20200412.podf

2.3 days

Figure 2. Compartmental model. S=Susceptible, E=Exposed, I;= Infectious in the prodromic phase (the length of time including
E and |, stages is the incubation period), l;=Asymptomatic Infectious, |,s=Paucysymptomatic Infectious, |ms=Symptomatic
Infectious with mild symptoms, lss=Symptomatic Infectious with severe symptoms, ICU=severe case admitted to ICU, H=severe
case admitted to the hospital but not in intensive care, R=Recovered, D=Deceased.


https://www.epicx-lab.com/uploads/9/6/9/4/9694133/inserm-covid-19_report_lockdown_idf-20200412.pdf

The SIR model as an equation-based model

 The modelis already expressed as a system of
differential equations

* Due to their non-linearity, it is very complex to solve
them analytically in an exact manner, i.e. one cannot
express S(1), |(t) and R(t) as functions of t, S(0), |(0) and
R(O)

« Resolution is through numerical integration methods



Simulating the SIR model: approach by integration

« 3requirements for each numerical integration
method:

« Equations to be infegrated
* Initial conditions
 Increasing sequence of@dscre’re time values

METHOD OF@TEGRATION

Solutions: sequence of values of unknowns at
specified time values



Simulating the SIR model: approach by integration

Initialisation of model parameters
betac=1

betai = 0.8
gamma =0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N,
betac*betai*X[0]*X[1]/N - gamma*X[1],
gamma®*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)



Simulating the SIR model: approach by integration

betac=1
betai = 0.8
gamma =0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N,
betac*betai*X[0]*X[1]/N - gamma*X[1],
gamma®*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)

Writing the model
equations. X is a
three-component
vector:

X[0] =S,

X[1]=l,

X[2]=R



Simulating the SIR model: approach by integration

betac=1
betai = 0.8
gamma =0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N,
betac*betai*X[0]*X[1]/N - gamma*X[1],
gamma®*X[1] ])

. ) Setting a discrete fime interval over which
from scipy import integrate to calculate the evolution of populations
t= |InSpace(O, 50, 50) .I. — [O,] ,2,3,4,5,6,...,50]

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)



Simulating the SIR model: approach by integration

betac=1
betai = 0.8
gamma =0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N,
betac*betai*X[0]*X[1]/N - gamma*X[1],
gamma®*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)

Setting of model initial conditions: S(0) = N-
X0 = array([N-1, 1, 0]) 1;1(0) = 1: R(0) =0

X = integrate.odeint(dX_dt, X0, t)



Simulating the SIR model: approach by integration

betac=1
betai = 0.8
gamma =0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N,
betac*betai*X[0]*X[1]/N - gamma*X[1],
gamma®*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)

X0 = array([N-1, 1, 0])

Method for numerical integration of
X = integrate.odeint(dX_dt, X0, t) differential equations over a specified

discrete interval




Simulating the SIR model: approach by integration
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Figure 3. Results of the simulation of the computational equation-based model with odeint
integration method: in blue the evolution of susceptible population size, in red the infectious, in
green the removed (8 = 0.8,y = 0.3, N = 1000, S(0) =999, I1(0) = 1, R(0) = 0, time =
[0,1,...,50]).



The SIR model expressed by finite differences

Discretisation of the original equations leads to a reformulation of the
differential equations as finite difference equations
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Simulating the SIR model: finite difference approach

S = [N-1]. | initialise three vectors:] N2
| =[1]

R =1[0] I 1
def population_t1(): R | @

susceptibles_t0 = S[-1].

infected _t0 = I[-1].

recovered_t0 = R[-1]

susceptibles_t1 = susceptibles t0 - beta*infected tO*susceptibles_t0/N

infected_t1 = infected_tO + beta*infected_t0*susceptibles_t0/N - gamma*infected_t0
recovered_t1 = recovered_t0 + gamma®*infected_t0

S.append(susceptibles_t1)

l.append(infected_t1)

R.append(recovered t1)

returnS, |, R

foriin range(t):
SIR = population_t1()
S = SIR[O].
| = SIR[1].
R = SIR[2].



Simulating the SIR model: finite difference approach

S = [N-1].
| =[1]
R=[0]

def population_t1():
susceptibles_t0 = S[-1].
infected _t0 = I[-1].
recovered_t0 = R[-1]
susceptibles_t1 = susceptibles t0 - beta*infected tO*susceptibles_t0/N
infected_t1 = infected_tO + beta*infected_t0*susceptibles_t0/N - gamma*infected_t0
recovered_t1 = recovered_t0 + gamma®*infected_t0

S.append(susceptibles_t1) First iteration  Third iteration
l.append(infected_t1) N N
R.append(recovered t1) s(0) | s(1) | s2) | s3)
returnS, |, R \j

You populate the vectors
for i in range(t): one component at a ’rime
SIR = population_t1() Each new Componen’r IS
S = SIR[O]. cqlc.ula’red taking the last
| = SIR[1]. existing component as the

R = SIR[2]. initial condition

Second iteration




Simulation with finite differences
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Figure 5. Results of the simulation of the computational equation-based model with finite
difference integration method: in blue the evolution of susceptible population size, in red the
infectious, in green the removed (f = 0.8,y = 0.3, N = 1000, S(0) =999,1(0) =1, R(0) =0,
time = [0, 1, ..., 50]).



Two equation-based approaches

« The approaches seen so far are both equation-based

« The first simulated the model by integrating the system of differential
equations using a numerical method (odeint from scipy, Python library)

« The second simulated the model by making an a priori discretisation of

the equations, making them finite difference equations and calculating
the populations at each instant based on the values at the previous
time instant

« Both approaches to the simulation of the SIR model follow naturally
from the formulation of the model itself

* In neither case is the individual agent traceable (population variations)



An equation-based simulation for the SIR model

https://sites.google.com/site/biologydarkow/physiology/covid-19-sir-
simulation

SIR Model for COVID-19 | Base SIR Model | SIR with Hospital Resources | | Delayed Symptoms Model
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https://docs.google.com/document/d/1LHkalz6DObiBhilLv2
EINMO0d86bSqazdyF-DRLmG5RM/edit#



https://sites.google.com/site/biologydarkow/physiology/covid-19-sir-simulation
https://docs.google.com/document/d/1LHka1z6DObjBhiLv2EInMO0d86bSqazdyF-DRLmG5RM/edit

An equation-based simulation for the SIR model

Examine the basic model:

« Which variable/parameter would social distancing directly impact on
in the modele Why?

«  Will social distancing increase or decrease this variable/parameter?

Run several simulations and describe how social distancing affects the
patterns of system evolution.

SIR Model for CQV|D-1 SIR with Hospital Resources Delayed Symptoms Model
pg 1 P

Number of Individuals

1,00 1575 30,50 4525 60,00
Days
=== Susceptible === Infected
=== Recovered === Deceased

Infected I Deceased J Hospital Resources

v 0 U Information

Run Live Reset




Agent-based models



How to simulate the SIR model with an agent-based
approach?

dS

= —S P(susceptible becomes infectious) =

= — S P(susceptible contacts infectious) P(infectious infects susceptible) =
= — S [mean number of contacts for individual * P(the contact is infectious)] * B; =

= -5 |Bey| B = —SBiBez= -EF (16)

The probability that a susceptible becomes infectious (P(susceptible
becomes infectious)) depends on the probability that a susceptible meets
an infectious (P(susceptible contacts infectious)), and on the probability

that a susceptible becomes infectious after the contact (P(infectious
infect susceptible))



How to simulate the SIR model with an agent-based
approach?

‘;—’; = [P(infectious is removed) =yl = %I

the recovery-or-death rate y can be modelled as the reciprocal of the

average duration of infectivity d. This is also equivalent to the assumption
that the duration of fime spent by an individual in the infectious state is a
random variable with an exponential distribution (Sterman, 2000; p. 305).



How to simulate the SIR model with an agent-based
approach?

dl ds dR _ IS
dt dt dt N

For deriving the infectious compartment, we can apply the boundary
condition



Agent-based approach to the SIR model

What has changed compared to before?

The inferpretation of the variables in the equations
underlying the model has changed

EQUATION-BASED AGENT-BASED

Frequency/rate of Contacts of individuals +
infection and removal probability of infection +
duration of the infectivity period

Big eye on population A small eye on what
changes happens to agents



Agent-based approach to the SIR model

The agent-based approach is
based on:

« Creating a number of ogen’r‘ « Equal o the size of the
. Associate these agents with population of inferest

the appropriate variables « Any agent can be
representing their state ‘ susceptible, infected or

during the evolution of the cured and may have
system become infected at some
+ Codifying rules of behaviour fime
for each agent over tfime « Next slide
Possibly,

« Carrying out aggregate
measurements on the system

to facilitate the presentation » Keep information on the total
of results ‘ number of suscepfible,

infected and cured



How can we model the spread of a virus in a population
using an agent-based approach?

What kind of agents?
What characteristics should they have?
How would they behave?
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http://modelingcommons.org/browse/one_model/6279

Simulation with agent-based approach
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Figure 8. Average results of 100 simulation runs of the computational agent-based model: in blue

the evolution.ofsdsceptible population size, in red the infectious, in green the removed (5; = 0.8,
B.=1,y=0.3,N=1000,5(0) =999,1(0) =1,R(0) =0, time = [0, 1, ...,50]).



Analysing the simulation (graphical interface and
code), schematise in the form most conﬁenial to you
the rules of behaviour of the agents and the functioning

of the simulation itself

When in doubt, the answer is one and only one:
NetLogo dictionary https://ccl.northwestern.edu/netlogo/docs/dictionary.html

Name of the procedure [ Scope of the procedure

Setup procedures for each agent

setup General setup settings: clear plots, create the grid

setup-turtles Agent settings: create agents, position them in the grid

setup-culture-max Assigning a value to the culture with maximum traits values check the agent’s state

etup-agent-culture Assigning a random culture to each agent
p-agent-culture-color Setting the color to the agent according to its culture agent’s state = S? agent’s|state = I? agent’s state = R?
Main procedure

Execute all the local and graph procedures in their order until I randomly select §. contacts l l check the current time l | do not update agent’s state
there are active agents l
Local procedures ( START ) X X

cultural-interact fon Agents look for a neighbor to Interact with for each contact  current time 2 1/y current time <1/y

overlap_between Reporting overlap between two agents (range from 0 to F)

culturally_interact ing i ) i do no('update

[ get_turtl ighbo: le) Interaction between a target agent and its selected neighbor agent’s state

IF A=




§
Y;’

1100

Persons

Population Changes over Time

184

[ susceptible
[ Infected
[ Recovered




The rules of each agent according to the agent-based
approach to the SIR model

for each agent

1

check the agent’s state

agent’s state = S? agent’s|state = |? agent’s state = R?
randomly select 8. contacts check the current time do not update agent’s state
for each contact  current time 2 1/y current time < 1/y
check the contact’s state update agent’s do not'update
stateto R agent’s state

contact’s state = |?

with probability 3, update
the agent’s state to |




to go to move

ask turtles
if ticks >= time [stop] [right random 360 forward 1]
move end
transmission
sickness \\\\\\\\\\\*
tick to transmission

end ask turtles with [color = orangel

[

let healthy-person one-of other turtles in-radius 1 with [color = 68]
if healthy-person != nobody
[ask healthy-person [
if random 100 < 90
[set color orangelll
]

end

to sickness )
ask turtles with [color = orange]
[set days days + 1
if days >= 15
[ifelse random 100 < 20
[ set LM LM + 1 die 1
[set color blue] 1

end



Comparison of approaches

« The results obtained from the different modelling approaches are
similar but not exactly equivalent

« The agent model produces different results each fime it is run
« Thisis not the case for equation approaches

« Equation approaches contain information about the probability but this

probability appears in the form of frequencies that are parameterised
in the model as constants

betac =1 Parameter for average contacts

betai = 0.8 Parameter for average probability of contagion

gamma = 0.3 | Parameter for average probability of recovery
~N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N,
betac*betai*X[0]*X[1]/N - gamma*X[1],
gamma®*X[1] ])

X = integrate.odeint(dX_dt, X0, t)



Comparison of approaches

« The results obtained from the different modelling approaches are
similar but not exactly equivalent

« The agent model produces different results each fime it is run
« Thisis not the case for equation approaches

« Equation approaches contain information about the probability but this
probability appears in the form of frequencies that are parameterised
iNn the model as constants

« The agent modelis the only one that genuinely includes the
stochasticity of the system in its formulation

« Going beyond the determinism of differential equations



The rules of each agent according to the agent-based
approach to the SIR model

for each agent

l

check the agent’s state

agent’s state = S? agent’s|state = |? agent’s state = R?
’ \ A4
randomly s%ct B. contacts check the current time do not update agent’s state
for each contact  current time 2 1/y current time < 1/y
check the contact’s state update agent’s do not'update
stateto R agent’s state

contact’s s?teeﬁ-\
with\orobability 3, update
the : etol




In summary



Comparison of approaches: top-down vs bottom-up

 The equation-based model is top-down because the equations already
include expert knowledge of the problem.

« The agent model is bottom-up in that the overall behaviour of the
population emerges from measures of the dynamics of individual
agents and their probability of becoming infected or recovering.

« The equation-based model examines the population as a whole, at
most compartmentalised

« The agent-based model inspects each agent and provides details on its
status.



Comparison of approaches: determinism vs probability

« The agent-based model produces different results each time it is run

« The equation-based model always gives the same result from the same
initial conditiones.

« Equation-based approaches also include information about the
disease that relates to probability. However, these probabilities only
appear as parameterised frequencies in the model as constants. After
defining them, they become constant values, numerical parameters
and lose their original meaning as probabilistic measures.

« The agent approach genuinely includes the stochasticity of the system
in its formulation, overcoming the determinism of differential equation:s.
When agents, not aggregated populations, are considered, each
individual has a probability that is specified by the given parameters.



Comparison of approaches: continuous vs. discrete

« The equation-based model is formulated with continuous differential
equations in both population and time

« Temporal discretisation is the result of the various integration steps,
which in tfurn are only due to our need to calculate and simulate

« The agent model is inherently discrete in both population and time

« The minimum components of the system are the agents, which are
discrete by definition

« Time steps (ticks) are finite and discrete



Classic vs. complex... (i.e. where we started)

The 3 categories of comparison can describe not only the differences
between equation-based and agent-based simulations, but also between
classical and complex systems.

At the root of complexity is the presence of a large but finite number of
individual elements in a system. These elements, called agents, interact
locally according to non-linear (sometimes probabilistic) relationships. In
turn, these rules, when applied to all agents, give the system emergent
global properties that can only partially be explained from the behaviour
of the individual components (see definition by Cilliers, 2002).

The linearity of interactions between components - which was a
paradigm in Newtonian physics - ensures the superposition of effects on
the system from the combination of local behaviour ("the whole is the sum
of its parts”). Classical systems are also deterministic since, given
differential equations describing their dynamics and initial conditions, their
evolution in time is determined in any future state with arbitrary precision.



Describing models: equation or agent?

is in one sense more general. The problem may be summarised as follows :
One (or more) infected person is introduced into a community of individuals,
more or less susceptible to the disease in question. The disease spreads from
the affected to the unaffected by contact infection. Each infected person runs
through the course of his sickness, and finally is removed from the number of
those who are sick, by recovery or by death. The chances of recovery or death
vary from day to day during the course of his illness. The chances that the
affected may convey infection to the unaffected are likewise dependent upon
the stage of the sickness. As the epidemic spreads, the number of unaffected
members of the community becomes reduced. Since the course of an epidemic
is short compared with the life of an individual, the population may be con-
sidered as remaining constant, except in as far as it is modified by deaths due
to the epidemic disease itself. In the course of time the epidemic may come to
an end. One of the most important probems in epidemiology is to ascertain



Describing models: equation or agent?

is in one sense more general. The problem may be summarised as follows :
|One (or more) infected person [is introduced into alcommunity of individuals,
Iﬁore or less susceptible |to the disease in question. The disease spreads from
the affected to the unaffected by |contact infection.| Each |infected person runs
through the course of his sickness, and finally is|removed [from the number of
those who are sick, by recovery or by death. The chances of recovery or death
vary from day to day during the course of his illness. The chances that the
affected may convey infection to the unaffected are likewise dependent upon
the stage of the sickness. As the epidemic spreads, the number of unaffected
members of the community becomes reduced. Since the course of an epidemic
is short compared with the life of an individual, the population may be con-
sidered as remaining constant, except in as far as it is modified by deaths due
to the epidemic disease itself. In the course of time the epidemic may come to
an end. One of the most important probems in epidemiology is to ascertain




Describing models: equation or agent?

is in one sense more general. The problem may be summarised as follows :
One (or more) infected person is introduced into a community of individuals,
more or less susceptible to the disease in question. The disease spreads from
the affected to the unaffected by contact infection. Each infected person runs
through the course of his sickness, and finally is removed from the number of
those who are sick, by recovery or by death. The chances of recovery or death
vary from day to day during the course of his illness. The chances that the
affected may convey infection to the unaffected are likewise dependent upon
the stage of the sickness. As the epidemic spreads,l the number of unaffected

members of the community becomes reduced.

Since the course of an epidemic

is short compared with the life of an individual, the|population| may be con-
sidered as remaining constant, except in as far as it is|modified by deaths|due
to the epidemic disease itself. In the course of time the epidemic may come to
an end. One of the most important probems in epidemiology is to ascertain




Describing models: equation or agent?

In the infroduction to the original paper, the first approach is an agent
approach

In order to make the 'sense’ of the model, the authors feel the need to
give a description that follows individuals in their transition from
susceptible to infected to cured

Having clarified the mechanism on agents, we move on to the
formulation in terms of population compartments and their variations

From there, one is ready to move on to the equation-based formulation
of the model

Research in science education has also focused heavily on learning
through equation and agent models

Equation models have a more familiar mathematical structure,
especially for older students

Agent models satisfy more the demand for a sense of mechanism, of
understanding ‘'what is going on'.



Network models



Back to the assumptions of the SIR model

The population is isolated

Birth or death dynamics (from causes other than iliness) are neglected:
the sum of individuals in the compartments is constant

The population is completely mixed (full mixing hypothesis): individuals )

with whom a susceptible person has contact are chosen at random in
the population

All individuals have the same number of contacts with other individuals
in the same time period

to the state of the disease: an infected individual has the same
contacts as a susceptible or cured individuadl

All infected individuals tfransmit the disease with equal probability
All susceptible individuals are equally likely to contract the disease
The disease has no incubation period

Once cured, an individual is immediately immune to the disease



Problems with the homogeneity hypothesis

The homogeneity assumption used in the SIR model equations may be
iInadequate in various real-world situations in which individuals:

« have great heterogeneity in contact rates
« have specific interaction patterns
« are in contact with only a small part of the population.

A wide range of social and biological contagion processes requires
capturing the contact pattern structure of individuals in modelling (Pastor-
Satorras, Castellano, Van Mieghem & Vespignani, 2015).

HOMOGENEOUS MIXING SOCIAL STRUCTURE CONTACT-NETWORK MODELS ~ MULTI-SCALE MODELS AGENT-BASED MODELS
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Charting the Next Pandemic: Modeling Infectious Disease Spreading in the Data Science Age
https://link.springer.com/book/10.1007/978-3-319-93290-3



https://link.springer.com/book/10.1007/978-3-319-93290-3

http://networksciencebook.com/

Albert-Laszl6 Barabasi

NETWORK
SCIENCE


http://networksciencebook.com/

Networks: the heart of complex systems

Behind every complex system is an intricate network that encodes the
interactions between the system's components:

« The network that encodes the interactions between genes, proteins

and metabolites integrates these components into the cells that thus
become alive. The very existence of this cellular network is @
prerequisite for life.

« The electrical pattern that captures the connections between neurons,
called the neural network, is the key to our understanding of how the
brain works and our consciousness.

« The sum of all professional, friendship and family ties, often called the
social network, is the fabric of society and determines the dissemination
of knowledge, behaviour and resources.

« Communication Networks
« Electrical Networks

« Commercial Networks

* Internet networks



Network: the heart of complex systems

The interest in network science that exploded during the first decade of
the 21st century is rooted in the discovery that, despite the obvious
diversity of complex systems, the structure and evolution of the
networks behind each system is guided by a common set of
fundamental laws and principles.

Thus, despite the incredible differences in the shape, size, nature, age
and scope of real networks, most networks are guided by common
organisational principles.

Once the nature of the components and the precise nature of the

interactions between them are disregarded, the resulting networks are
more similar than different.



Network science 101

« Networks are described mathematically as graphs

« A graphis a collection of points, called verfices (nodes in physics,
actors in the social sciences).

« These points are joined by a set of connections, called edges, links and
fies, in mathematics, physics and social sciences respectively.

 Each edge denotes the presence of a relationship or interaction
between vertices that unites

« Bidirectional interaction (undirected networks) or unidirectional
interaction (directed networks)



Different networks, same graph
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The figure shows a small subset of (a) the Internet, where routers are
connected to each other; (b) the Hollywood actors' network, where two
actors are connected if they starred in the same film; (c) a protein-protein
intferaction network, where two proteins are connected if there is
experimental evidence that they can bind to each other in the cell.
Although the nature of the nodes and links differs, these networks have the
same graphical representation, consisting of N = 4 nodes and L = 4 links,
shown in (d).



Different networks, same properties

- scale-freeness, a criterion Barabdsi and Albert use to characterise
complex networks: as a network grows, new nodes connect to the most
connected nodes, a phenomenon known as preferential attachment.
The resulting network is called scale-free because it exhibits the same
properties on multiple scales.

« This phenomenon is pervasive: it is empirically observed in many
different situations

« Why do we observe the same thing in contexts that a priori have
nothing in common?¢

« [sscale-freeness a sign of a universal law (nomothetic approach) oris it
only an empirical characterisation (ideographic approach?

» 'A clash of two cultures’

(Jacomy, 2020)
https://journals.sagepub.com/doi/full/10.1177/2053951720949577



From graph to adjacency matrix
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Path and connection

- A path Py, connecting vertices ip and i, is a succession of connected
edges {(ij, ij+1)} with j =0, ..., n-1.

* nis the number of edges crossed, also called the path length

« A graph is connected if there is a path connecting any two vertices in
the graph

« A C-component of a graph is defined as a connected subgraph

Example of Disconnected Graph Example of Connected Graph




Degree of a node

The degree of a node is the number of edges (links) the node possesses

k3=4k6=3k4=2



With these notions, how would you construct a network
to model an epidemiological phenomenon?

Vertices, links, directed/undirected, components...

Help yourself graphically



Compartmental

In short, the nodes
are the people,
while the links are
the potential
transmission paths
of a virus

Undirected graph



What happens when you vaccinate?

Reason both with respect to the model you previously
formulated in the group and to the one now proposed

Reason both locally and globally



Compartmental

When an individual
gets vaccinated, his
or her node is
disconnected from
the network
(because it can no
longer acquire or
transmit a disease).

Vaccination then
fades into the net.



Three strategies for vaccinating a population

Strategy A Strategy B Strategy C

e 0 certain number of e a number of the e 0 certain number of
nodes are chosen Mmost connected nodes are chosen
at random and nodes are identified at random and, for

vaccinated and vaccinated each of these, one
is vaccinated at
random from
among ifs
neighbours

Which sirategy do you consider most effective? According to which
'‘parameters'? Why?

If you had to select a second choice, what would it be? Why?



An unexpected ending

Strategy A Strategy B Strategy C

e 0 certain number of e a number of the e 0 certain number of
nodes are chosen Mmost connected nodes are chosen
at random and nodes are identified at random and, for

vaccinated and vaccinated each of them, one
is vaccinated at
random from
among ifs
neighbours

« Intuitively, we expect strategy B to be more efficient than A and C, and
indeed it is.

« Strategies A and C would appear to be equivalent BUT they are not
« Strategy C is more efficient than strategy A



Let us explore the three strategies with a simulation

https://www.complexity-explorables.org/slides/facebooked-flu-shots/
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https://www.complexity-explorables.org/slides/facebooked-flu-shots/

vaccinate 38.00%
C () )
AR ﬁs a
</ O U

random strongly connected random neighbors

' not vaccinated
@ Erdbs-Rényi network

' largest component
[i] Barabasi-Albert network

i vaccinated

The network, consisting of 200 people (nodes), has only one component, so
if a contagion process were to propagate through this network, eventually
every node could be affected. Highly connected individuals are displayed
somewhat larger than those with a small number of connections. The
connectivity of a node is measured by its degree, i.e. the number of
connections (neighbours) it has.



vaccinate 38.00%

C { ) )
random strongly connected random neighbors

' not vaccinated
@] Erdés-Rényi network

' largest component
@ Barabasi-Albert network

' vaccinated

When vaccinating a certain fraction of the population, a certain number of
nodes will be disconnected from the network according to strategies A, B
or C.



Strategy A

All vaccinated individuals are
now isolated and moving to
the periphery. However, a
considerable part of the
network is still in a large
component. The network has
not really disconnected,

because 38% is too low for this
strategy.
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4 different simulations

Same percentage of vaccinated (38%)

Same strategy
Same type of network







Strategy C

However, comparing the size
of the largest component in
strategy A and C, we see that
typically this giant component
is significantly smaller for C
than for A. Therefore, strategy
C is more effective!l

4 different simulations

Same percentage of vaccinated (38%)
Same strategy

Same type of network



Why the difference between A and C?
The paradox of friendship

A peculiar property of complex networks, especially those with
heterogeneous connectivity at nodes, is that on average the degree of
a node's neighbours is greater than the degree of the node itself

This is known as the friendship paradox

Why should my 'friend’ show different properties to minee
After all, am | not also a friend of my friend<¢



The paradox of friendship

A—B——D



The paradox of friendship A—B——D

Number of Total number | Mean number
friends of friends of | of friends of
friends friends

Total:
Mean:



The paradox of friendship A—B——D

Number of Total number | Mean number
friends of friends of | of friends of

friends friends

B 3 5 1.67
C 2 5 2.5
D 2 5 2.5

Total: 8 18 9.67
Mean: 2 2.25 2.42 out of 4 persons

out of 4 persons out of 8 connections/friendships



. . "the mean number of friends of friends is
The pCII'CIdOX of frlendshlp always greater than the mean number of

friends of individuals".

« The secretis hidden in the term 'on average' and that we are
comparing different averages

* |In one case we are averaging over nodes, in the other we are
averaging over links

« When we choose a random set of nodes (strategy A), the probability of
choosing node n among N nodes is the same for all nodes (1/N)

« When we choose a random neighbour of a random node, the
probability of choosing a node is proportional to the degree g of the
target node: we are no longer choosing between nodes uniformly

« We are more likely to choose a node with a higher degree.



The paradox of friendship

« It can be shown that on average a neighbour's degree is:

g0 = (1 +0%)ko

‘\

average degree of @
node

variance in the degree of
nodes

« On average, the degree of the neighbouring node is always greater
than the average degree of the node

« The effect is strongest for networks that have high variance node
distributions (e.g. in Barabasi-Albert networks)

Demonstration: https://mindyourdecisions.com/blog/2012/09/04/why-
your-friends-have-more-friends-than-you-the-friendship-paradox


https://mindyourdecisions.com/blog/2012/09/04/why-your-friends-have-more-friends-than-you-the-friendship-paradox

Why Your Friends Have More Friends

than You Do!
Scott L. Feld (Feld, 1991)

State University of New York at Stony Brook hﬂ'DSI//WWW.iSTOI’.OI’C]
/stable/2781907

It is reasonable to suppose that individuals use the number of
friends that their friends have as one basis for determining whether
they, themselves, have an adequate number of friends. This article
shows that, if individuals compare themselves with their friends, it
is likely that most of them will feel relatively inadequate. Data on
friendship drawn from James Coleman’s (1961) classic study Tke
Adolescent Society are used to illustrate the phenomenon that most
people have fewer friends than their friends have. The logic under-
lying the phenomenon is mathematically explored, showing that the
mean number of friends of friends is always greater than the mean
number of friends of individuals. Further analysis shows that the
proportion of individuals who have fewer friends than the mean
number of friends their own friends have is affected by the exact
arrangement of friendships in a social network. This disproportion-
ate experiencing of friends with many friends is related to a set of
abstractly similar “class size paradoxes” that includes such diverse
phenomena as the tendencies for college students to experience the
mean class size as larger than it actually is and for people to experi-
ence beaches and parks as more crowded than they usually are.


https://www.jstor.org/stable/2781907

