
Three approaches to 
epidemiological modelling 
and simulation



Equation-based models



(Almost) 100 years of epidemic models

• (Kermack & McKendrick, 1927) first mathematical model that described 
the evolution of an epidemic

• Numerous versions of this model to suit various epidemiological contexts 
(also COVID-19)

• The basic idea, however, remained that of Kermack and McKendrick's 
1927 paper



The SIR model (Kermack & McKendrick, 1927)

A population is divided into three compartments

S
• Susceptible = compartment of healthy individuals who 

can be infected and contract the disease

I
• Infected = compartment of individuals who have 

contracted the disease and can transmit it to others

R

• Removed = compartment that includes both individuals 
who have recovered and are therefore immune to the 
disease and those who have died of the disease 



The SIR model (Kermack & McKendrick, 1927)

The time evolution of these three compartments is described by a system 
of three differential equations



The assumptions underlying the model

• The population is isolated
• Birth or death dynamics (from causes other than illness) are neglected: 

the sum of individuals in the compartments is constant
• The population is completely mixed (full mixing hypothesis): individuals 

with whom a susceptible person has contact are chosen at random in 
the population

• All individuals have the same number of contacts with other individuals 
in the same time period

• The number of contacts between individuals does not vary according 
to the state of the disease: an infected individual has the same 
contacts as a susceptible or cured individual

• All infected individuals transmit the disease with equal probability
• All susceptible individuals are equally likely to contract the disease
• The disease has no incubation period
• Once cured, an individual is immediately immune to the disease 



The results of applying the model

• At the beginning of the epidemic, the number of Ss will gradually 
decrease due to the contagions, while the class of Is will swell for the 
same reason. 

• As the I's increase, the greater the probability of an S being infected, 
and therefore the increase in I's will initially tend to accelerate

• At some point, however, some 
individuals will begin to move 
from the I-class to the R-class 
because they have healed or 
died in the meantime. 

• The number of susceptible is 
always decreasing and the 
number of removed is always 
increasing

http://misterpalomar.blogspot.com/2020/02/la-matematica-
delle-epidemie-parte-prima.html

http://misterpalomar.blogspot.com/2020/02/la-matematica-delle-epidemie-parte-prima.html


How would you modify the model (the equations) to 
distinguish between the dead and the healed?



The SIRD model

Dµ



Other variations
https://www.epicx-lab.com/uploads/9/6/9/4/9694133/inserm-covid-
19_report_lockdown_idf-20200412.pdf 

https://www.epicx-lab.com/uploads/9/6/9/4/9694133/inserm-covid-19_report_lockdown_idf-20200412.pdf


The SIR model as an equation-based model

• The model is already expressed as a system of 
differential equations

• Due to their non-linearity, it is very complex to solve 
them analytically in an exact manner, i.e. one cannot 
express S(t), I(t) and R(t) as functions of t, S(0), I(0) and 
R(0)

• Resolution is through numerical integration methods



Simulating the SIR model: approach by integration

• 3 requirements for each numerical integration 
method:

• Equations to be integrated
• Initial conditions
• Increasing sequence of discrete time values

METHOD OF INTEGRATION

Solutions: sequence of values of unknowns at 
specified time values



Simulating the SIR model: approach by integration

betac = 1
betai = 0.8
gamma = 0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N ,

betac*betai*X[0]*X[1]/N - gamma*X[1] ,
gamma*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)   

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)

Initialisation of model parameters



Simulating the SIR model: approach by integration

betac = 1
betai = 0.8
gamma = 0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N ,

betac*betai*X[0]*X[1]/N - gamma*X[1] ,
gamma*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)   

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)

Writing the model 
equations. X is a 
three-component 
vector: 
X[0] = S, 
X[1]=I,
X[2]=R



Simulating the SIR model: approach by integration

betac = 1
betai = 0.8
gamma = 0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N ,

betac*betai*X[0]*X[1]/N - gamma*X[1] ,
gamma*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)   

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)

Setting a discrete time interval over which 
to calculate the evolution of populations
t = [0,1,2,3,4,5,6,...,50]



Simulating the SIR model: approach by integration

betac = 1
betai = 0.8
gamma = 0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N ,

betac*betai*X[0]*X[1]/N - gamma*X[1] ,
gamma*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)   

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)

Setting of model initial conditions: S(0) = N-
1; I(0) = 1; R(0) = 0



Simulating the SIR model: approach by integration

betac = 1
betai = 0.8
gamma = 0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N ,

betac*betai*X[0]*X[1]/N - gamma*X[1] ,
gamma*X[1] ])

from scipy import integrate
t = linspace(0, 50, 50)   

X0 = array([N-1, 1, 0])

X = integrate.odeint(dX_dt, X0, t)
Method for numerical integration of 
differential equations over a specified 
discrete interval



Simulating the SIR model: approach by integration



The SIR model expressed by finite differences

Discretisation of the original equations leads to a reformulation of the 
differential equations as finite difference equations



Simulating the SIR model: finite difference approach
S = [N-1].
I = [1]
R = [0]

def population_t1():
susceptibles_t0 = S[-1].
infected_t0 = I[-1].
recovered_t0 = R[-1]
susceptibles_t1 = susceptibles_t0 - beta*infected_t0*susceptibles_t0/N
infected_t1 = infected_t0 + beta*infected_t0*susceptibles_t0/N - gamma*infected_t0
recovered_t1 = recovered_t0 + gamma*infected_t0
S.append(susceptibles_t1)
I.append(infected_t1)
R.append(recovered_t1)
return S, I, R

for i in range(t):
SIR = population_t1()
S = SIR[0].
I = SIR[1].
R = SIR[2].

I initialise three vectors: S

I

R

N-1

1

0



Simulating the SIR model: finite difference approach
S = [N-1].
I = [1]
R = [0]

def population_t1():
susceptibles_t0 = S[-1].
infected_t0 = I[-1].
recovered_t0 = R[-1]
susceptibles_t1 = susceptibles_t0 - beta*infected_t0*susceptibles_t0/N
infected_t1 = infected_t0 + beta*infected_t0*susceptibles_t0/N - gamma*infected_t0
recovered_t1 = recovered_t0 + gamma*infected_t0
S.append(susceptibles_t1)
I.append(infected_t1)
R.append(recovered_t1)
return S, I, R

for i in range(t):
SIR = population_t1()
S = SIR[0].
I = SIR[1].
R = SIR[2].

You populate the vectors 
one component at a time
Each new component is 
calculated taking the last 
existing component as the 
initial condition

S(0) S(1)

First iteration

S(2)

Second iteration

S(3)

Third iteration



Simulation with finite differences



Two equation-based approaches

• The approaches seen so far are both equation-based
• The first simulated the model by integrating the system of differential 

equations using a numerical method (odeint from scipy, Python library) 
• The second simulated the model by making an a priori discretisation of 

the equations, making them finite difference equations and calculating 
the populations at each instant based on the values at the previous 
time instant 

• Both approaches to the simulation of the SIR model follow naturally 
from the formulation of the model itself

• In neither case is the individual agent traceable (population variations)



An equation-based simulation for the SIR model

https://sites.google.com/site/biologydarkow/physiology/covid-19-sir-
simulation 

https://docs.google.com/document/d/1LHka1z6DObjBhiLv2
EInMO0d86bSqazdyF-DRLmG5RM/edit# 

https://sites.google.com/site/biologydarkow/physiology/covid-19-sir-simulation
https://docs.google.com/document/d/1LHka1z6DObjBhiLv2EInMO0d86bSqazdyF-DRLmG5RM/edit


An equation-based simulation for the SIR model

Examine the basic model:
• Which variable/parameter would social distancing directly impact on 

in the model? Why?
• Will social distancing increase or decrease this variable/parameter? 

Run several simulations and describe how social distancing affects the 
patterns of system evolution.



Agent-based models



How to simulate the SIR model with an agent-based 
approach?

The probability that a susceptible becomes infectious (𝑃(𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒
𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠)) depends on the probability that a susceptible meets 
an infectious (𝑃(𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠)), and on the probability 
that a susceptible becomes infectious after the contact (𝑃(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠
𝑖𝑛𝑓𝑒𝑐𝑡 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒))



How to simulate the SIR model with an agent-based 
approach?

the recovery-or-death rate 𝛾 can be modelled as the reciprocal of the 
average duration of infectivity 𝑑. This is also equivalent to the assumption 
that the duration of time spent by an individual in the infectious state is a 
random variable with an exponential distribution (Sterman, 2000; p. 305).



How to simulate the SIR model with an agent-based 
approach?

For deriving the infectious compartment, we can apply the boundary 
condition



Agent-based approach to the SIR model

What has changed compared to before?

The interpretation of the variables in the equations 
underlying the model has changed

EQUATION-BASED AGENT-BASED
Frequency/rate of 
infection and removal

Contacts of individuals + 
probability of infection + 
duration of the infectivity period

Big eye on population 
changes

A small eye on what 
happens to agents



Agent-based approach to the SIR model

The agent-based approach is 
based on:
• Creating a number of agents
• Associate these agents with 

the appropriate variables 
representing their state 
during the evolution of the 
system

• Codifying rules of behaviour 
for each agent over time

Possibly,
• Carrying out aggregate 

measurements on the system 
to facilitate the presentation 
of results

• Equal to the size of the 
population of interest

• Any agent can be 
susceptible, infected or 
cured and may have 
become infected at some 
time

• Next slide

• Keep information on the total 
number of susceptible, 
infected and cured



How can we model the spread of a virus in a population 
using an agent-based approach?

What kind of agents? 
What characteristics should they have?

How would they behave?



NETLOGO???

http://modelingcommons.org/browse/one_model/6279#model_tabs_browse_nlw 

http://modelingcommons.org/browse/one_model/6279


Simulation with agent-based approach



Analysing the simulation (graphical interface and 
code), schematise in the form most congenial to you 

the rules of behaviour of the agents and the functioning 
of the simulation itself

When in doubt, the answer is one and only one: 
NetLogo dictionary https://ccl.northwestern.edu/netlogo/docs/dictionary.html 





The rules of each agent according to the agent-based 
approach to the SIR model





Comparison of approaches

• The results obtained from the different modelling approaches are 
similar but not exactly equivalent

• The agent model produces different results each time it is run
• This is not the case for equation approaches
• Equation approaches contain information about the probability but this 

probability appears in the form of frequencies that are parameterised 
in the model as constants

betac = 1
betai = 0.8
gamma = 0.3
N = 1000

def dX_dt(X, t=0):
return array([ - betac*betai*X[0]*X[1]/N ,

betac*betai*X[0]*X[1]/N - gamma*X[1] ,
gamma*X[1] ])

X = integrate.odeint(dX_dt, X0, t)

Parameter for average contacts
Parameter for average probability of contagion
Parameter for average probability of recovery



Comparison of approaches

• The results obtained from the different modelling approaches are 
similar but not exactly equivalent

• The agent model produces different results each time it is run
• This is not the case for equation approaches
• Equation approaches contain information about the probability but this 

probability appears in the form of frequencies that are parameterised 
in the model as constants

• The agent model is the only one that genuinely includes the 
stochasticity of the system in its formulation

• Going beyond the determinism of differential equations



The rules of each agent according to the agent-based 
approach to the SIR model



In summary



Comparison of approaches: top-down vs bottom-up

• The equation-based model is top-down because the equations already 
include expert knowledge of the problem. 

• The agent model is bottom-up in that the overall behaviour of the 
population emerges from measures of the dynamics of individual 
agents and their probability of becoming infected or recovering. 

• The equation-based model examines the population as a whole, at 
most compartmentalised

• The agent-based model inspects each agent and provides details on its 
status.



Comparison of approaches: determinism vs probability

• The agent-based model produces different results each time it is run
• The equation-based model always gives the same result from the same 

initial conditions.

• Equation-based approaches also include information about the 
disease that relates to probability. However, these probabilities only 
appear as parameterised frequencies in the model as constants. After 
defining them, they become constant values, numerical parameters 
and lose their original meaning as probabilistic measures. 

• The agent approach genuinely includes the stochasticity of the system 
in its formulation, overcoming the determinism of differential equations. 
When agents, not aggregated populations, are considered, each 
individual has a probability that is specified by the given parameters.



Comparison of approaches: continuous vs. discrete

• The equation-based model is formulated with continuous differential 
equations in both population and time 

• Temporal discretisation is the result of the various integration steps, 
which in turn are only due to our need to calculate and simulate

• The agent model is inherently discrete in both population and time 
• The minimum components of the system are the agents, which are 

discrete by definition
• Time steps (ticks) are finite and discrete



Classic vs. complex... (i.e. where we started)

The 3 categories of comparison can describe not only the differences 
between equation-based and agent-based simulations, but also between 
classical and complex systems. 
At the root of complexity is the presence of a large but finite number of 
individual elements in a system. These elements, called agents, interact 
locally according to non-linear (sometimes probabilistic) relationships. In 
turn, these rules, when applied to all agents, give the system emergent 
global properties that can only partially be explained from the behaviour 
of the individual components (see definition by Cilliers, 2002). 
The linearity of interactions between components - which was a 
paradigm in Newtonian physics - ensures the superposition of effects on 
the system from the combination of local behaviour ("the whole is the sum 
of its parts"). Classical systems are also deterministic since, given 
differential equations describing their dynamics and initial conditions, their 
evolution in time is determined in any future state with arbitrary precision.



Describing models: equation or agent?



Describing models: equation or agent?



Describing models: equation or agent?



Describing models: equation or agent?

• In the introduction to the original paper, the first approach is an agent 
approach

• In order to make the 'sense' of the model, the authors feel the need to 
give a description that follows individuals in their transition from 
susceptible to infected to cured

• Having clarified the mechanism on agents, we move on to the 
formulation in terms of population compartments and their variations

• From there, one is ready to move on to the equation-based formulation 
of the model

Research in science education has also focused heavily on learning 
through equation and agent models
• Equation models have a more familiar mathematical structure, 

especially for older students
• Agent models satisfy more the demand for a sense of mechanism, of 

understanding 'what is going on'.



Network models



Back to the assumptions of the SIR model

• The population is isolated
• Birth or death dynamics (from causes other than illness) are neglected: 

the sum of individuals in the compartments is constant
• The population is completely mixed (full mixing hypothesis): individuals 

with whom a susceptible person has contact are chosen at random in 
the population

• All individuals have the same number of contacts with other individuals 
in the same time period

• The number of contacts between individuals does not vary according 
to the state of the disease: an infected individual has the same 
contacts as a susceptible or cured individual

• All infected individuals transmit the disease with equal probability
• All susceptible individuals are equally likely to contract the disease
• The disease has no incubation period
• Once cured, an individual is immediately immune to the disease 



Problems with the homogeneity hypothesis

The homogeneity assumption used in the SIR model equations may be 
inadequate in various real-world situations in which individuals:
• have great heterogeneity in contact rates
• have specific interaction patterns
• are in contact with only a small part of the population. 

A wide range of social and biological contagion processes requires 
capturing the contact pattern structure of individuals in modelling (Pastor-
Satorras, Castellano, Van Mieghem & Vespignani, 2015). 

Hence Network Science

Charting the Next Pandemic: Modeling Infectious Disease Spreading in the Data Science Age 
https://link.springer.com/book/10.1007/978-3-319-93290-3

https://link.springer.com/book/10.1007/978-3-319-93290-3


http://networksciencebook.com/ 

http://networksciencebook.com/


Networks: the heart of complex systems

Behind every complex system is an intricate network that encodes the 
interactions between the system's components:
• The network that encodes the interactions between genes, proteins 

and metabolites integrates these components into the cells that thus 
become alive. The very existence of this cellular network is a 
prerequisite for life.

• The electrical pattern that captures the connections between neurons, 
called the neural network, is the key to our understanding of how the 
brain works and our consciousness.

• The sum of all professional, friendship and family ties, often called the 
social network, is the fabric of society and determines the dissemination 
of knowledge, behaviour and resources.

• Communication Networks
• Electrical Networks 
• Commercial Networks
• Internet networks



Network: the heart of complex systems

• The interest in network science that exploded during the first decade of 
the 21st century is rooted in the discovery that, despite the obvious 
diversity of complex systems, the structure and evolution of the 
networks behind each system is guided by a common set of 
fundamental laws and principles. 

• Thus, despite the incredible differences in the shape, size, nature, age 
and scope of real networks, most networks are guided by common 
organisational principles. 

• Once the nature of the components and the precise nature of the 
interactions between them are disregarded, the resulting networks are 
more similar than different. 



Network science 101

• Networks are described mathematically as graphs
• A graph is a collection of points, called vertices (nodes in physics, 

actors in the social sciences). 
• These points are joined by a set of connections, called edges, links and 

ties, in mathematics, physics and social sciences respectively.

• Each edge denotes the presence of a relationship or interaction 
between vertices that unites

• Bidirectional interaction (undirected networks) or unidirectional 
interaction (directed networks)



Different networks, same graph

The figure shows a small subset of (a) the Internet, where routers are 
connected to each other; (b) the Hollywood actors' network, where two 
actors are connected if they starred in the same film; (c) a protein-protein 
interaction network, where two proteins are connected if there is 
experimental evidence that they can bind to each other in the cell. 
Although the nature of the nodes and links differs, these networks have the 
same graphical representation, consisting of N = 4 nodes and L = 4 links, 
shown in (d).



Different networks, same properties

• scale-freeness, a criterion Barabási and Albert use to characterise 
complex networks: as a network grows, new nodes connect to the most 
connected nodes, a phenomenon known as preferential attachment. 
The resulting network is called scale-free because it exhibits the same 
properties on multiple scales. 

• This phenomenon is pervasive: it is empirically observed in many 
different situations 

• Why do we observe the same thing in contexts that a priori have 
nothing in common?

• Is scale-freeness a sign of a universal law (nomothetic approach) or is it 
only an empirical characterisation (ideographic approach?

» 'A clash of two cultures'
(Jacomy, 2020) 
https://journals.sagepub.com/doi/full/10.1177/2053951720949577 



From graph to adjacency matrix

A compact way to 
specify all 
connections in a 
graph of dimension N 
(i.e. with N vertices) is 
the adjacency matrix 
A of dimension N × N 

aij = 1 if there is an 
edge connecting 
nodes i and j 
aij = 0 otherwise

A is symmetrical in 
undirected graphs 
and asymmetrical in 
oriented graphs



Path and connection

• A path Pi0,in connecting vertices i0 and in is a succession of connected 
edges {(ij, ij+1)} with j = 0, ..., n-1.

• n is the number of edges crossed, also called the path length
• A graph is connected if there is a path connecting any two vertices in 

the graph
• A C-component of a graph is defined as a connected subgraph



Degree of a node

The degree of a node is the number of edges (links) the node possesses

k3 = 4 k6 = 3 k4 = 2



With these notions, how would you construct a network 
to model an epidemiological phenomenon?

Vertices, links, directed/undirected, components...

Help yourself graphically



In short, the nodes 
are the people, 
while the links are 
the potential 
transmission paths 
of a virus

Undirected graph



What happens when you vaccinate?

Reason both with respect to the model you previously 
formulated in the group and to the one now proposed

Reason both locally and globally



Modelling vaccination

When an individual 
gets vaccinated, his 
or her node is 
disconnected from 
the network 
(because it can no 
longer acquire or 
transmit a disease). 

Vaccination then 
fades into the net.x

x
x



Three strategies for vaccinating a population

Which strategy do you consider most effective? According to which 
'parameters'? Why?

If you had to select a second choice, what would it be? Why?

Strategy A
• a certain number of 

nodes are chosen 
at random and 
vaccinated

Strategy B
• a number of the 

most connected 
nodes are identified 
and vaccinated

Strategy C
• a certain number of 

nodes are chosen 
at random and, for 
each of these, one 
is vaccinated at 
random from 
among its 
neighbours



An unexpected ending

• Intuitively, we expect strategy B to be more efficient than A and C, and 
indeed it is. 

• Strategies A and C would appear to be equivalent BUT they are not
• Strategy C is more efficient than strategy A

Strategy A
• a certain number of 

nodes are chosen 
at random and 
vaccinated

Strategy B
• a number of the 

most connected 
nodes are identified 
and vaccinated

Strategy C
• a certain number of 

nodes are chosen 
at random and, for 
each of them, one 
is vaccinated at 
random from 
among its 
neighbours



Let us explore the three strategies with a simulation

https://www.complexity-explorables.org/slides/facebooked-flu-shots/ 

https://www.complexity-explorables.org/slides/facebooked-flu-shots/


The network, consisting of 200 people (nodes), has only one component, so 
if a contagion process were to propagate through this network, eventually 
every node could be affected. Highly connected individuals are displayed 
somewhat larger than those with a small number of connections. The 
connectivity of a node is measured by its degree, i.e. the number of 
connections (neighbours) it has.



When vaccinating a certain fraction of the population, a certain number of 
nodes will be disconnected from the network according to strategies A, B 
or C.



Strategy A

All vaccinated individuals are 
now isolated and moving to 
the periphery. However, a 
considerable part of the 
network is still in a large 
component. The network has 
not really disconnected, 
because 38% is too low for this 
strategy.

4 different simulations
Same percentage of vaccinated (38%)
Same strategy
Same type of network



Strategy B

The network becomes very 
sparse and the largest 
component is also very small.
By removing high degree 
nodes, we effectively remove 
many more links. The network 
falls apart.
Among the isolated nodes, 
many are not vaccinated 
(herd immunity)

4 different simulations
Same percentage of vaccinated (38%)
Same strategy
Same type of network



Strategy C

However, comparing the size 
of the largest component in 
strategy A and C, we see that 
typically this giant component 
is significantly smaller for C 
than for A. Therefore, strategy 
C is more effective! 4 different simulations

Same percentage of vaccinated (38%)
Same strategy
Same type of network



Why the difference between A and C?
The paradox of friendship

• A peculiar property of complex networks, especially those with 
heterogeneous connectivity at nodes, is that on average the degree of 
a node's neighbours is greater than the degree of the node itself

• This is known as the friendship paradox

• Why should my 'friend' show different properties to mine?
• After all, am I not also a friend of my friend?



The paradox of friendship



The paradox of friendship

Person Number of 
friends

Total number 
of friends of 
friends

Mean number 
of friends of 
friends

A

B

C

D

Total:
Mean:



The paradox of friendship

Person Number of 
friends

Total number 
of friends of 
friends

Mean number 
of friends of 
friends

A 1 3 3

B 3 5 1.67

C 2 5 2.5

D 2 5 2.5

Total: 8 18 9.67
Mean: 2 2.25 2.42
out of 4 persons

out of 4 persons
out of 8 connections/friendships



The paradox of friendship

• The secret is hidden in the term 'on average' and that we are 
comparing different averages

• In one case we are averaging over nodes, in the other we are 
averaging over links 

• When we choose a random set of nodes (strategy A), the probability of 
choosing node n among N nodes is the same for all nodes (1/N)

• When we choose a random neighbour of a random node, the 
probability of choosing a node is proportional to the degree q of the 
target node: we are no longer choosing between nodes uniformly

• We are more likely to choose a node with a higher degree.

"the mean number of friends of friends is 
always greater than the mean number of 
friends of individuals".



The paradox of friendship

• It can be shown that on average a neighbour's degree is:

• On average, the degree of the neighbouring node is always greater 
than the average degree of the node

• The effect is strongest for networks that have high variance node 
distributions (e.g. in Barabasi-Albert networks)

Demonstration: https://mindyourdecisions.com/blog/2012/09/04/why-
your-friends-have-more-friends-than-you-the-friendship-paradox 

average degree of a 
node

variance in the degree of 
nodes

https://mindyourdecisions.com/blog/2012/09/04/why-your-friends-have-more-friends-than-you-the-friendship-paradox


(Feld, 1991)
https://www.jstor.org
/stable/2781907 

https://www.jstor.org/stable/2781907

